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S U M M A R Y
We propose a method to invert surface wave dispersion data directly for 3-D variations of
shear wave speed, that is, without the intermediate step of phase or group velocity maps,
using frequency-dependent ray tracing and a wavelet-based sparsity-constrained tomographic
inversion. A fast marching method is used to compute, at each period, surface wave traveltimes
and ray paths between sources and receivers. This avoids the assumption of great-circle
propagation that is used in most surface wave tomographic studies, but which is not appropriate
in complex media. To simplify the problem we consider quasi-stratified media with smoothly
varying seismic properties. We represent the 3-D shear wave speed model by means of 1-D
profiles beneath grid points, which are determined from all dispersion data simultaneously
using a wavelet-based sparsity-constrained tomographic method. The wavelet coefficients of
the wave speed model are estimated with an iteratively reweighted least squares algorithm,
and upon iteration the surface wave ray paths and the data sensitivity matrix are updated
using the newly obtained wave speed model. To demonstrate its feasibility, we apply the
method to determine the 3-D shallow crustal shear wave speed variations in the Taipei basin of
Taiwan using short period interstation Rayleigh wave phase velocity dispersion measurements
extracted from the ambient noise cross-correlation method. The results are consistent with
previous studies and reveal strong shallow crustal heterogeneity that correlates with surface
geology.

Key words: Wavelet transform; Inverse theory; Surface waves and free oscillations; Seismic
tomography.

1 I N T RO D U C T I O N

Surface wave tomography based on dispersion or waveforms from
earthquake data plays an important role in studies of the structure of
the Earth’s crust and upper mantle on both regional and global scales
(e.g. Woodhouse & Dziewonski 1984; Nolet 1990; Montagner &
Tanimoto 1991; Simons et al. 1999; Ritzwoller et al. 2001; Boschi
& Ekström 2002; An et al. 2009; Yao et al. 2010). In the past
decade, surface wave tomography based on ambient noise cross-
correlations has greatly improved our understanding of regional
crustal structures (e.g. Shapiro et al. 2004; Sabra et al. 2005; Yao
et al. 2006; Yang et al. 2007; Lin et al. 2008). Crustal studies based
on ambient noise tomography are typically conducted in the period
band of 5–40 s, but shorter period surface waves (∼1 s, using station

spacing of ∼20 km or less) have been used to investigate shallow
crustal or even near surface shear wave speed variations (e.g. Picozzi
et al. 2009; Huang et al. 2010; Young et al. 2011; Pilz et al. 2012;
Lin et al. 2013; Shirzad & Shomali 2014). This line of research is
important for the prediction of ground strong motion in seismically
active regions (Zhang et al. 2008) and for the characterization of
overburden structure in oil and gas reservoir fields (e.g. Gouédard
et al. 2012).

Surface wave or ambient noise tomography using dispersion mea-
surements is usually performed in two steps: (i) construction of 2-D
phase (or group) velocity maps using the traveltime tomographic
method either based on the ray theory (e.g. Cara & Lévêque 1987;
Trampert & Woodhouse 1995; Ekström et al. 1997; Barmin et al.
2001; Yao et al. 2006) or 2-D finite frequency sensitivity kernels
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(e.g. Ritzwoller et al. 2002; Yoshizawa & Kennett 2004), followed
by (ii) point-wise inversion of dispersion data for 1-D profiles of
shear wave speed as a function of depth at each grid/cell point,
which together form the 3-D shear wave speed model (e.g. Shapiro
& Ritzwoller 2002; Yao et al. 2008). In regions with dense sta-
tion distribution (such as USArray), localized estimation of 2-D
phase velocity variations with azimuthal anisotropy can be effi-
ciently obtained from tomographic methods based on the eikonal
or Helmholtz equations from earthquake surface waves or ambient
noise cross-correlations (Pollitz 2008; Liang & Langston 2009; Lin
et al. 2009; Pollitz & Snoke 2010; Lin & Ritzwoller 2011).

Direct linearized inversion of path-specific surface wave disper-
sion data without constructing intermediate phase or group velocity
maps for 3-D shear wave speed structure can be achieved, for in-
stance, using ray-based approaches (Boschi & Ekström 2002; An
et al. 2009; Feng & An 2010; Pilz et al. 2012) or analytical 3-D finite
frequency sensitivity kernels based on a 1-D reference model (e.g.
Zhou et al. 2006). However, these approaches do not usually update
the ray paths and sensitivity kernels for the newly obtained 3-D
models, and one-step linearization may lead to biased wave speed
estimation in complex media, for instance, in the shallow crust
where wave speed variations can exceed 20 per cent (e.g. Picozzi
et al. 2009; Young et al. 2011; Lin et al. 2013). Adjoint tomography
and full waveform inversion using earthquake waveforms (Tape
et al. 2010; Zhu et al. 2012) or ambient noise cross-correlations
(Chen et al. 2014; Gao & Shen 2014) directly solve for 3-D wave
speed models with 3-D sensitivity kernels updated iteratively. This
type of approach is accurate in theory, but it comes at a high com-
putational cost, in particular at high frequencies, unless sufficiently
accurate 3-D reference models are used to facilitate convergence.

To balance accuracy and computational efficiency, we propose
a ray tracing-based direct inversion method that inverts (in a sin-
gle inversion) all path-specific surface wave dispersion data for the
3-D shear wave speed model. The linearization scheme is generally
similar to that proposed by Boschi & Ekström (2002) or Feng &
An (2010), but we perform surface wave ray tracing at each pe-
riod using a fast marching method (Rawlinson & Sambridge 2004)
and iteratively update the sensitivity kernels of period-dependent
dispersion measurements to updates of the 3-D wave speed model.
Accounting for the effect of heterogeneity on wave propagation is
particularly useful for short period dispersion measurements, which
are sensitive to the strong and complicated shallow crustal struc-
ture. There is no formal obstruction for the incorporation of finite
frequency effects, but in the implementation presented here we use
simple ray geometry.

In order to facilitate multiscale tomography and overcome ill-
posedness of the inverse problem due to uneven path coverage,
we use a wavelet-based sparsity-constrained seismic tomography
method (e.g. Simons et al. 2011; Fang & Zhang 2014) for the direct
inversion. To show its validity, we apply the direct inversion method
to the short period dispersion data set obtained from ambient noise
cross-correlation in the Taipei Basin of Taiwan (Huang et al. 2010).

2 M E T H O D O L O G Y

In this section, we describe the strategy for the direct inversion of
dispersion measurements for 3-D shear wave speed variations using
a fast marching ray tracing method (Rawlinson & Sambridge 2004)
and a wavelet-based sparsity-constrained inversion technique (Fang
& Zhang 2014). We first provide the mathematical representations
of the forward and inverse problems and then illustrate the inversion
procedure with real and synthetic data.

2.1 The forward problem

Traditionally in global seismology, we measure the average sur-
face wave phase velocity cAB (ω) at an angular frequency ω between
source A and receiver B with an assumption of great circle propaga-
tion of surface waves. Therefore, the actual traveltime measurement
tAB (ω) from A to B can be obtained from

tAB (ω) = LAB

cAB (ω)
, (1)

with LAB the great circle distance between A and B.
Due to structural heterogeneity, however, the real surface wave

ray path may deviate from the great circle path between source and
receiver. The traveltime can thus be expressed as:

tAB (ω) =
∫

lAB

S(l, ω) dl, (2)

where S(l, ω) is the (unknown) local slowness along (the unknown)
actual ray path lAB between A and B. Eq. (2), which assumes the
high-frequency approximation, can be discretized as:

tAB (ω) =
P∑

p=1

Sp(ω)�lAB , (3)

where Sp(ω) represents the phase slowness for path segment �lAB

along AB, and P is the number of path segments. In view of Fermat’s
Principle, the problem can be linearized around a (known) reference
path that can be computed, for instance, along the great circle in
a laterally homogeneous medium or (as will be done here) by ray
tracing in a heterogeneous medium.

For the forward problem we parametrize the area under study
using a regular grid of K points (Fig. 1a), and underneath each
grid point k we consider a 1-D model �k. This 1-D model, which
itself is parametrized by means of depth nodes (Fig. 1b), is used to
calculate local phase (or group) velocity as a function of frequency
for that grid point. We construct the 2-D distribution of the phase
slowness estimates Ŝk(ω)(k = 1, 2, . . . , K ) at frequency ω for the
study region and then use bilinear interpolation to estimate the phase
slowness at any point along the path lAB :

Sp(ω) =
K∑

k=1

υpk Ŝk(ω), (4)

where υpk are bilinear interpolation coefficients. The slowness at
the kth grid point, that is Ŝk(ω), is obtained from a 1-D model �k

as:

Ŝk(ω) = g(�k, ω), (5)

where g(�k, ω) is a forward function that maps �k to frequency
dependent phase or group velocities based on the layered model
according to Haskell (1953) and Thomson (1950), with modifica-
tions due to Dunkin (1965) and Herrmann (2001). Therefore, we
need to transform our model represented by vertical grid nodes to
a layered model (a stack of homogeneous elastic isotropic layers)
using a simple linear interpolation method (Fig. 1b).

The traveltime tAB (ω) at frequency ω along the path AB can then
be expressed as

t
AB

(w) =
P∑

p=1

Sp(w)�l
AB

=
P∑

p=1

K∑
k=1

υpk Ŝk(w)�l
AB

. (6)
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Direct inversion of surface wave dispersion 1253

Figure 1. Illustration of the model discretization in the horizontal plane (a) and in the vertical direction (b). In (a) the black solid line represents the propagation
path between two stations A and B for the surface wave at some period. The phase slowness at any point p along the path is determined from the values at four
surrounding horizontal grid points using a bilinear interpolation method. In (b) the vertical grid model (bigger black dots with finer layers shown as the black
line) is perturbed (as shown by the red dot and red dashed lines) to compute the depth sensitivity of dispersion data to model parameters (bigger black dots)
via a difference method (see texts for more details).

For the ith surface wave traveltime measurement, we rewrite eq. (6)
as:

ti (w) =
K∑

k=1

νik Ŝk(w), (7)

where ν ik is
∑P

p=1 υ
(i)
pk�li and υ

(i)
pk are the bilinear interpolation

coefficients along the ray path associated with the ith traveltime
data.

2.2 The inverse problem

The objective of the tomographic inversion is to find a model m
that minimizes the differences δti(ω) between the observed times
tobs
i (w) and the model predictions ti(w) for all frequencies w. The

traveltime difference for path i is given by

δti (w) = tobs
i (w) − ti (w) =

K∑
k=1

νikδ Ŝk(w) ≈ −
K∑

k=1

νik
δCk(w)

C2
k (w)

,

(8)

where ti(w) is the calculated traveltime using a reference model that
can be updated in the inversion, and Ck and δCk(ω) are, respectively,
the phase velocity and phase-velocity perturbation at the kth grid
point. The phase velocity Ck = 1/Ŝk and its perturbation can be
expressed as:

δCk(w) =
∫ [

∂Ck(w)

∂αk(z)

∣∣∣∣
�k

δαk(z) + ∂Ck(w)

∂βk(z)

∣∣∣∣
�k

δβk(z)

+∂Ck(w)

∂ρk(z)

∣∣∣∣
�k

δρk(z)

]
dz, (9)

where �k denotes the 1-D reference model and αk(z), βk(z)
and ρk(z) are the compressional wave speed, shear wave speed

and mass density, respectively. The sensitivities of phase ve-
locity to each model parameter at depth can be computed us-
ing a simple difference method by performing two forward
dispersion calculations with a small perturbation to that param-
eter (Fig. 1b). Typically, surface wave dispersion is mostly sen-
sitive to shear wave speed. In the shallow crust, however, short
period Rayleigh wave dispersion also has a significant sensitiv-
ity to compressional wave speed. We relate compressional wave
speed and density to shear wave speed using the empirical re-
lationships α(z) = ∑

n χ [α]
n βn(z) and ρ(z) = ∑

n χ [ρ]
n αn(z) given

by Brocher (2005), where χ [α,ρ]
n represent the fitting polynomial

coefficients. Then, δα(z) = ∑
n nχ [α]

n βn−1(z)δβ(z) = Rα(z)δβ(z)
and δρ(z) = ∑

n nχ [ρ]
n αn−1(z)δα(z) = Rρ(z)δβ(z), where Rα(z) =∑

n nχ [α]
n βn−1(z) and Rρ(z) = Rα(z)

∑
n nχ [ρ]

n αn−1(z), which are
the corresponding partial derivatives with respect to β. Finally, af-
ter discretizing the integration along depth in eq. (9) and inserting
it into eq. (8), we obtain:

δti (w) =
K∑

k=1

(
− νik

C2
k (ω)

) J∑
j=1

[
Rα(z j )

∂Ck(ω)

∂αk(z j )
+ Rρ(z j )

∂Ck(ω)

∂ρk(z j )

+∂Ck(ω)

∂βk(z j )

]∣∣∣∣
�k

δβk(z j ) =
M∑

l=1

Gilml , (10)

where J is the number of grid nodes in the depth direction, and
M = KJ, which is the total number of grid points. Through eq. (10)
we explicitly include the perturbation of compressional wave speed
and mass density on the calculation of surface wave dispersion.

Eq. (10) can be written in the matrix form:

d = Gm, (11)

where d is the surface wave traveltime residual vector for all paths
and frequencies, G is the data sensitivity matrix and m is the model
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parameter vector expressed as:

m = [δβ1(z1)...δβ1(zJ ) δβ2(z1)...δβ2(zJ )...δβK (z1)...δβK (zJ )]T .

(12)

A solution to eq. (11) can be found by minimizing the following
cost function:

(m) = ||d − Gm||22 + λ||Lm||22, (13)

where the first term on the right-hand side gives the �2-norm data
misfit and the second term denotes the �2-norm model regulariza-
tion term, L is a model smoothing operator and λ is the weighting
parameter balancing data fitting and model regularization. L is usu-
ally chosen as the first- or second-order spatial derivative operator
(Simons et al. 2002; Aster et al. 2013), although this tends to smear
out sharp boundaries and fine scale features even in regions with
high ray path density. An estimate of the solution m can then be
obtained from

m̃ = (GTG + λLTL)−1GTd, (14)

using, for instance, the LSQR algorithm by Paige & Saunders
(1982).

2.3 Wavelet-based sparsity-constrained inversion

Ray coverage is often highly uneven due to non-uniform station
and/or source geometry, missing data and propagation effects due
to lateral variations in elastic properties. Ideally, one would adapt
model parametrization to data distribution in a way that it will have
good resolution in regions with good data constraint, while keeping
the long wavelength features of the model in regions that are poorly
constrained by the data. A model parametrization based on data
constraints is difficult to achieve using regular grids or cells and
conventional regularization methods. For this reason, irregularly
distributed nodes or cells are often used in seismic tomography
to achieve data adaptive spatial resolution (e.g. Karason & Van
Der Hilst 2000; Spakman & Bijwaard 2001; Debayle & Sambridge
2004; Zhang & Thurber 2005).

Here we use a wavelet-based sparsity-constrained method (Fang
& Zhang 2014) to invert surface wave frequency-dependent travel-
time measurements for the model parameters, which is data adap-
tive so that model parametrization is inherently adaptive to data
distribution. This method takes advantage of the multiresolution
representation of the wavelet transform to solve the model param-
eters (that is, wave speed anomalies) in the wavelet domain, and
it resolves features of different scales depending on the strength
of the local data constraints (Chiao & Liang 2003). The main idea
of the multiscale tomography in the wavelet domain is to resolve
both the approximation coefficients and the detail coefficients in
regions where data constraint is good, thus producing higher reso-
lution. For regions with poor data constraint only the approximation
coefficients can be resolved, and detail coefficients that cannot be
constrained by the data will be zero due to the constraint of �1-norm
regularization, that is, sparsity, by assuming that wave speed models
are sparse in the wavelet domain (Simons et al. 2011; Charléty et al.
2013).

Different from (Fang & Zhang 2014) which minimize the data
residuals in the �2-norm, we use the �1-norm-based minimization
for the data misfit function since it will be more robust to outliers
than the �2-norm or least squares solution (Shearer 1997).

For a wavelet transform on a basis represented by a matrix W
(Daubechies 1992), a wave speed model m in the wavelet domain

can be expressed as m̂ = Wm, where m̂ contains the wavelet coef-
ficients. We perform the wavelet transform using a lifting scheme,
which decomposes the original model into approximation coeffi-
cients and detail coefficients at different scales (Sweldens 1996).
The approximation coefficients represent the smooth components
of the model and are obtained by representing the model in the
space formed by the scaling functions at different scales. Detail
coefficients describe the fine scale features of the model and are
obtained by expanding the model using wavelet functions.

For an orthogonal wavelet basis the inverse wavelet transform
is W−1 = WT so that WT W = I, where I is the identity matrix
and superscript T denotes the transpose. We choose a D4 wavelet
(Daubechies 1992) because it is orthogonal and its support size is
small compared to the dimension of our model (thus minimizing
edge effects). Moreover, it has a vanishing moment of 2 which
leads to sparse wavelet coefficients. A 3-D wavelet transform is ap-
proximated by applying 1-D wavelet transform sequentially to each
dimension (Prochazka et al. 2011). Therefore, the original inverse
problem without model constraints or regularizations becomes

minimize ||GW−1Wm − d||1, (15)

which can be simplified to

minimize ||Ĝm̂ − d||1, (16)

where Ĝ = GWT and m̂ = Wm. Now the inverse problem is re-
cast as first seeking the wavelet coefficients of the model and then
using the inverse wavelet transform matrix W−1 to infer the model
parameters.

As shown by Fang & Zhang (2014), the sensitivity matrix is less
ill-posed in the wavelet domain than in the spatial domain. However,
some regularization is still needed to stabilize the inversion. We
follow Loris et al. (2007) and Fang & Zhang (2014) and apply the
�1-norm regularization by assuming that the model parameters in
the wavelet domain are generally sparse (Simons et al. 2011). Now
the inverse problem becomes

minimize ||Ĝm̂ − d||1 + λ||m̂||1, (17)

where Langrange multiplier λ is used to balance data misfit and
sparsity. If one knows the noise level in the data λ can be deter-
mined from the discrepancy principle (Scherzer 1993). If one does
not know the data noise, like in seismic tomography, one can use
generalized cross validation or the L-curve method to find a solution
(Aster et al. 2013).

The minimization problem shown in eq. (17) can be solved using
an iteratively reweighted least squares (IRLS) method (Scales et al.
1988). For this purpose we first rewrite eq. (17) as

minimize

∥∥∥∥
[

Ĝ
λI

]
m̂ −

[
d
0

]∥∥∥∥
1

, (18)

and then use a residual vector

r = G̃m̂ − d̃, (19)

where G̃ is [ Ĝ
λI

] and d̃ is [ d
0

] to simplify the expression. We thus

want to minimize

f (m̂) = ‖r‖1 =
N∑

l=1

|rl |. (20)
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Direct inversion of surface wave dispersion 1255

The function f is non-differentiable at points where one of the el-
ements of r is zero, but we can compute the derivatives at other
points:

∂ f (m̂)

∂m̂n
=

N∑
l=1

∂|rl |
∂m̂n

=
N∑

l=1

G̃l,n
rl

|rl | . (21)

Approximately, the gradient of f is

∇ f (m̂) ≈ G̃TRr = G̃TR(G̃m̂ − d̃), (22)

where R is a diagonal weighting matrix with diagonal elements
that are the absolute values of the reciprocals of the residuals,
so that

Ri,i =
{

1
ε

|ri | < ε

1
|ri | |ri | ≥ ε

, (23)

where ε is a tolerance below which we consider the residuals to be
effectively zero. According to eq. (22), optimization (that is solving
∇ f (m̂) = 0) gives

G̃TRG̃m̂ = G̃TRd̃. (24)

Effectively, these are the normal equations for the least squares
problem

minimize

∥∥∥∥√
R

[
Ĝ
λI

]
m̂ −

√
R

[
d
0

]∥∥∥∥
2

. (25)

When G̃ is large and sparse it can be advantageous to apply LSQR
(Paige & Saunders 1982) to solve the least squares problem (25)
instead of solving the system of equations in (24) directly. In the
IRLS procedure, we first solve eq. (25) by setting R to the identity
matrix and then update it iteratively to get a sparse solution.

3 A P P L I C AT I O N T O TA I P E I B A S I N

As a proof of concept, we apply our method using the same dis-
persion data set as in Huang et al. (2010) to estimate the crustal
structure of Taipei basin, Taiwan. Using the method due to Yao et al.
(2006), Huang et al. (2010) measured Rayleigh wave phase velocity
dispersion for periods ranging from 0.5 to 3.0 s from the empirical
Green’s functions estimated from ambient noise cross-correlation.
Based on eq. (1), we estimated the traveltimes at periods from 0.5
to 3.0 s between two stations from dispersion data. Fig. 2 shows the
station distribution as well as some major geological features in the

Figure 2. Topography, tertiary basement, faults, river systems and station locations in the Taipei basin. There are one active fault shown as the red solid lines
and two suspected active faults shown as the red dash lines. Station locations are shown as red triangles with station names marked.
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Figure 3. The ray paths obtained from the final 3-D model (see Figs 6 and 7) at four periods by the fast marching method: (a) 0.8 s, (b) 1.4 s, (c) 2.0 s and
(d) 2.6 s.

study region. The ray paths for four different periods are shown in
Fig. 3. These paths are obtained (with the fast marching method)
from the final 3-D model (shown in Figs 6 and 7). The study region
is meshed with 16 by 16 grid points with an interval of 0.015◦ in
latitude and 0.017◦ in longitude and eight grid nodes at 0.3 km
spacing in depth. In our �1-norm inversion based on eq. (25), we
choose ε (in eq. 23) to be 10−6 considering the machine accuracy
for single precision floating-point number. As a rule of thumb, the
fundamental mode Rayleigh wave phase velocity is mostly sensitive
to shear wave speed at depths around 1/3 of its corresponding wave-
length. For a uniform half-space Poisson solid, the phase velocity
c = 0.92Vs (shear wave speed, Shearer 2009). Therefore, we choose
an initial shear wave speed model that is close to the average of
measured phase velocities times 1.1 (Vs ≈ 1.1c) at the depth of 1/3
of the wavelength (Fig. 4). The empirical relationships according

to Brocher (2005) are used to obtain the reference compressional
wave speed and density models for each surface grid point.

To investigate the performance of our algorithm for the (spatial
and spectral) sampling produced by our data we perform checker-
board resolution tests. We construct a 3-D checkerboard model
in order to assess the lateral and vertical resolution (Figs 5a and
b), compute inter-station Rayleigh wave traveltimes for the same
source–receiver distribution as in the real data distribution (using
the fast marching method), add 1 per cent random noise to the syn-
thetic traveltime data, and invert the data using the method described
above. The results (Figs 5a and b) suggest that structures can be re-
solved well in regions where the data constraints are good. Fig. 6
shows the final inversion results at different depths in the shallow
crust. The results are generally consistent with the phase velocity
maps at the corresponding periods in Huang et al. (2010) and show
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Direct inversion of surface wave dispersion 1257

Figure 4. Transformation of all interstation Rayleigh wave phase velocity dispersion curves measured from the ambient noise cross-correlation method
(Huang et al. 2010) to a depth-shear wave speed approximation profile. For each Rayleigh wave phase velocity measurement, we replace period with 1/3 of
the corresponding wavelength (phase velocity times period) at the vertical axis and replace phase velocity with the approximated shear wave speed (1.1 times
phase velocity) at the horizontal axis. The average wave speed model from this profile (blue line) is used as the initial reference shear wave speed model in the
inversion.

a good correspondence to the geological features, with relatively
low shear wave speed in the basin and high wave speed in mountain
ranges (Fig. 2), which is also evident from vertical crustal sections
(Fig. 7). Upon our iterative, non-linear inversion the standard de-
viation of the traveltime residuals is reduced from 1.44 to 0.91 s,
and the average of the residuals for the final model is close to zero
(Fig. 8).

4 D I S C U S S I O N

We have developed an iterative, wavelet-based non-linear method
to invert surface wave dispersion data directly for 3-D shear wave
speed structure. Compared to conventional methods our new method
has the following advantages: (i) it does not require the construc-
tion of 2-D phase (or group) velocity maps; (ii) a 3-D reference
model can be included; (iii) constraints on the lateral variations in
structure can be incorporated, (iv) it is computationally efficient
compared to full waveform inversion or adjoint tomography; (v)
the regularization used to stabilize the inversion is less subjective
than common applications of damping and smoothing, and (vi) the
wavelet-based model parametrization is inherently adaptive to data
coverage.

We note that the formulation and implementation used here is
based on the high-frequency approximation (ray theory) and as-
sumes weak heterogeneity and smooth lateral variation of the elastic
properties. There is no obstruction, however, for the incorporation
of quasi-3D finite frequency kernels by combining 2-D lateral fi-
nite frequency kernels of surface wave traveltimes (e.g. Ritzwoller
et al. 2002; Yoshizawa & Kennett 2004; Zhou et al. 2004) with
1-D depth sensitivity kernels as used in this study. In the compu-
tation of 2-D lateral finite frequency kernels, we can use the 3-D

wave speed model at each inversion step to obtain the 2-D phase
velocity maps and construct the 2-D lateral kernel with respect to
each ray path. Therefore, the 2-D lateral kernels can also be updated
during the inversion. More accurate kernels can be computed from
the adjoint method (Tape et al. 2007; Chen et al. 2014), but the
computational cost at high frequencies (e.g. ∼1 Hz) is still large.
Therefore, our current approach will be especially useful to inves-
tigate shallow crustal or near surface wave speed structure using
higher frequency surface wave dispersion data, for instance, from
ambient noise cross-correlations or active source data in exploration
seismology or deep seismic sounding. If so desired, results from in-
versions using the method described here can serve as a starting
point for full waveform inversion.

An important further advantage and a motivation for its develop-
ment is its potential to exploit data redundancy though joint surface
and body wave inversions (Zhang et al. 2014). Indeed, due to its
formulation as a traveltime inversion it is easy to combine surface
and body wave traveltimes, and as long as the appropriate sensitivity
kernels are used it can jointly handle Rayleigh and Love wave (phase
and or group) velocities. Since shorter period Rayleigh wave dis-
persion data still have quite large sensitivity to compressional wave
speed structure in the shallow crust, the joint inversion of surface
wave and body wave traveltime data may provide better constraints
on both compressional wave speed and shear wave speed structures
in the shallow crust.

Problems may arise when model uncertainty is required for �1

norm direct inversions for millions of parameters, which is com-
mon in 3-D global or regional tomography. Uncertainty estimation
is relatively straightforward in the traditional two-step inversion,
which breaks the inverse problem into a linear step to construct the
phase/group velocity maps followed by a non-linear step to produce
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Figure 5. Lateral and vertical shear wave speed slices of the checkerboard test results. The checkerboard models at 0.3 and 0.9 km depths are shown in (a)
and (b). The top panels on vertical cross-section slices show the topography along the cross-section and the bottom panel gives the shear wave speed anomaly
in per cent with the colour bar given at the bottom. The triangles on each vertical cross-section slice mark the location of the stations close to the corresponding
profile.
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Figure 6. Horizontal slices of shear wave speed model of the Taipei Basin at depths of: (a) 0.3 km, (b) 0.9 km and (c) 1.5 km. Only zones of good resolution
based on the model uncertainty results (see Fig. 9) are shown.

Figure 7. Shear wave speed model along the two vertical cross-sections of (a) A–A′; (b) B–B′. Locations of the cross-sections are shown in Figs 6(a) and (b).
In each plot the top panel shows the topography along the cross-section and the bottom panel gives the shear wave speed (km s−1) with the colour bar given at
the bottom. Only zones of good resolution based on the model uncertainty results (see Fig. 10) are shown.

a 3-D model (e.g. Shapiro & Ritzwoller 2002; Yao et al. 2008). It
is still computationally prohibitive for 3-D tomography problems
but will become feasible with the increasing power of computers.
Since our data set is small, we estimate uncertainty using a Monte
Carlo error propagation technique (Aster et al. 2013). We first calcu-
lated the synthetic traveltimes using the inverted wave speed model,
and then inverted the data many times each time adding 2 per cent
Gaussian random noise. Finally, we calculated the standard devia-
tion using the obtained wave speed models. We also used different
initial models to take into account the under estimation of uncer-
tainty due to the use of regularization term in regions with poor or
even no data constraint. Figs 9 and 10 show the uncertainty (stan-
dard deviation) distribution for the final 3-D model. It shows very
large uncertainties where the data coverage is poor, but in regions
with good data constraints the uncertainty is, as expected, small.

We also compare the phase velocity maps between the two-
step inversion (Huang et al. 2010) and direct inversion methods
in Fig. 11. The phase velocity map for the direct inversion is con-
structed by computing the phase velocities for each grid point using
the final 3-D model. The results show very similar features with
low wave speed in basin regions and high wave speed in mountain
regions, except in regions with poor data coverage where artefacts
seem to appear in the two-step inversion.

5 C O N C LU S I O N

We propose an approach for ray tracing based direct (non-linear)
inversion of surface wave dispersion data (that is, without the inter-
mediate step of phase or group velocity maps) for 3-D shear wave
speeds using a wavelet-based sparsity-constrained tomographic
technique. During the iterative inversion, ray paths at each pe-
riod (and, thus, the sensitivity matrix in the inversion system) is
updated using the newly obtained wave speed model at each itera-
tion. This is particularly relevant for tomographic reconstructions
of complex media, for instance, in the shallow crust, where great-
circle propagation of surface waves is typically no longer valid.
The wavelet-based sparsity-constrained inversion naturally helps
to achieve multiresolution of the tomographic models with higher
resolution in regions better constrained by data. As a proof of con-
cept, we successfully applied our algorithm to obtain the shallow
crustal shear wave speed structure in the Taipei Basin of Taiwan
using the short period Rayleigh wave dispersion data from am-
bient noise cross-correlations. The large wave speed variations in
the study region strongly affect wave propagation of short period
surface waves. In the future, incorporation of quasi-3D sensitivity
kernels of surface wave dispersion data and joint inversion with
body wave traveltimes will be implemented to resolve P and S wave
speed variations in complex media better.
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Figure 8. Distribution of surface wave traveltime residuals before (light grey, with the average μ = −0.07 s and the standard deviation σ = 1.44 s) and after
inversion (dark grey, with μ = 0.01 s and σ = 0.91 s).

Figure 9. Estimated uncertainties of the wave speed model at depths of: (a) 0.3 km, (b) 0.9 km and (c) 1.5 km based on the Monte Carlo error propagation
method (see texts for details).

Figure 10. Estimated uncertainties of the wave speed model along two cross sections of (a) A–A′ and (b) B–B′ corresponding to Fig. 7.
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Figure 11. Comparison of phase velocity maps at 0.8 s and 2.0 s between the two step inversion (Huang et al. 2010) and direct inversion (this study) methods.
(a) 0.8 s of two-step inversion, (b) 0.8 s of direct inversion, (c) 2.0 s of two-step inversion and (d) 2.0 s of direct inversion.
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