initial upload

This commit is contained in:
张壹 2025-01-14 12:02:34 +08:00
parent 13ae91dcbe
commit 9677e0bf39
42 changed files with 80356 additions and 1 deletions

BIN
.DS_Store vendored Normal file

Binary file not shown.

View File

@ -1,2 +1,66 @@
# DRadiSurfTomo Direct surface wave radial anisotropy tomography package (DSurfRTomo)
please refer to:
Hu, S., H. Yao, and H. Huang (2020), Direct surface wave radial
anisotropy tomography in the crust of the eastern Himalayan
syntaxis. Journal of Geophysical Research: Solid Earth, 125,
e2019JB018257. https://doi.org/10.1029/2019JB018257
for details of the algorithm
The code is based on previous studies, especially on the implementation
of DSurfTomo:
Fang, H., H. Yao, H. Zhang, Y-C Huang, and R. D. van der Hilst (2015)
Direct inversion of surface wave dispersion for three-dimensional
shallow crustal structure based on ray tracing methodology and
application. Geophysical Journal International, 201, 1251-1263.
Please also refer to:
Rawlinson, N. and M. Sambridge (2004) Wave front evolution in
strongly heterogeneous layered media using the fast marching method,
Geophysical Journal International, 156(3), 631-647
for implementation of the fast marching method, and
Herrmann, R. B. (2013) Computer programs in seismology: An evolving
tool for instruction and research. Seismological Research Letter,
84(6), 1081-1088
for implementation of the 1-D surface wave dispersion kernel.
The dispersion data (ALLR.dat for Rayleigh wave
and ALLT.dat for Love wave), resulting model (DSurfRTomo.inMeasurement.dat)
in the crust of the eastern Himalayan syntaxis is provided in example/
#############
2019/05/18
The code may still need some modification
##############
output (default DRadiSurfTomo.inMeasure.dat) is in the format
: lon lat dep vsv gamma
To compute average shear wave velocity (vs) and radial anisotropy (xi),
use the following equaitons:
1. vs=vsv*(1+gamma)/2.0
2. xi=2*(gamma-1)/(gamma+1)*100%
##############
2021/08/08
1. check parallel computation can be used
2. add roughness computation
3. output Rayleigh/Love raypath at the final iteration
4. add some useful scripts in utils/
5. check noiselevel can be used in the synthetic tests
##############

Binary file not shown.

17
doc/usage Normal file
View File

@ -0,0 +1,17 @@
The usage of DRadiSurfTomo is quite similar to
DSurfTomo ()
and
DAzimSurfTomo ()
Here are some notes that may be useful.
1. model setup
2. parameter setup
3. checkerboard tests
4. plot the

BIN
example/.DS_Store vendored Normal file

Binary file not shown.

11897
example/example.EHS/AllL.dat Normal file

File diff suppressed because it is too large Load Diff

20621
example/example.EHS/AllR.dat Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,24 @@
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c INPUT PARAMETERS
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
AllR.dat c: Rayleigh wave data file
AllL.dat c: Love wave data file
12 19 18 c: nx ny nz (grid number in lat lon and depth direction)
32.5 90.50 c: goxd gozd (upper left point,[lat,lon])
0.5 0.5 c: dvxd dvzd (grid interval in lat and lon direction)
5000 c: nsrc*maxf
20.0 20.0 0.0 c: lambda1 lambda2 damp
2 c: nsublayer (numbers of sublayers for each grid interval:grid --> layer)
1.5 5.5 c: minimum velocity, maximum velocity
0.85 1.15 c: minimum gamma, maximum gamma
10 c: maxiter (iteration number)
0.1 c: sparsity fraction
36 c: kmaxRc (followed by periods)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0 c: kmaxRg
36 c: kmaxLc
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0 c: kmaxLg
0 c: synthetic flag(0:real data,1:synthetic)
0.02 c: noiselevel
2.5 c: threshold

343
example/example.EHS/MOD.Vsv Normal file
View File

@ -0,0 +1,343 @@
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 120.0
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930 2.3930
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670 3.3670
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120 3.4120
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110 3.4110
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970 3.3970
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160 3.4160
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520 3.4520
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050 3.5050
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810 3.5810
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890 3.6890
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270 3.8270
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190 4.0190
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890 4.3890
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560 4.4560
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700 4.4700
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750 4.4750
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820
4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820 4.4820

343
example/example.EHS/MOD.gam Normal file
View File

@ -0,0 +1,343 @@
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 120.0
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11897
example/example.ckbd/AllL.dat Normal file

File diff suppressed because it is too large Load Diff

20621
example/example.ckbd/AllR.dat Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,24 @@
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c INPUT PARAMETERS
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
AllR.dat c: Rayleigh wave data file
AllL.dat c: Love wave data file
12 19 18 c: nx ny nz (grid number in lat lon and depth direction)
32.5 90.50 c: goxd gozd (upper left point,[lat,lon])
0.5 0.5 c: dvxd dvzd (grid interval in lat and lon direction)
5000 c: nsrc*maxf
20.0 20.0 0.0 c: weight1 weight2 damp
2 c: nsublayer (numbers of sublayers for each grid interval:grid --> layer)
1.5 5.5 c: minimum velocity, maximum velocity
0.85 1.15 c: minimum gamma, maximum gamma
9 c: maxiter (iteration number)
0.1 c: sparsity fraction
36 c: kmaxRc (followed by periods)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0 c: kmaxRg
36 c: kmaxLc
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0 c: kmaxLg
1 c: synthetic flag(0:real data,1:synthetic)
0.01 c: noiselevel
2.5 c: threshold

View File

@ -0,0 +1,343 @@
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 120.0
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367 3.367
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412 3.412
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411 3.411
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398 3.398
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397 3.397
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416 3.416
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452 3.452
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505 3.505
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581 3.581
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689 3.689
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827 3.827
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019 4.019
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389 4.389
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456 4.456
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470 4.470
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475 4.475
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482
4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482 4.482

View File

@ -0,0 +1,343 @@
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 120.0
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

View File

@ -0,0 +1,342 @@
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489
2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297 2.489 2.489 2.297 2.297
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502
3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232 3.502 3.502 3.232 3.232
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548
3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276 3.548 3.548 3.276 3.276
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547
3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275 3.547 3.547 3.275 3.275
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534
3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262 3.534 3.534 3.262 3.262
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533
3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261 3.533 3.533 3.261 3.261
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553
3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279 3.553 3.553 3.279 3.279
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590
3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314 3.590 3.590 3.314 3.314
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645
3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365 3.645 3.645 3.365 3.365
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724
3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438 3.724 3.724 3.438 3.438
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837
3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541 3.837 3.837 3.541 3.541
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980
3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674 3.980 3.980 3.674 3.674
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180
4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858 4.180 4.180 3.858 3.858
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565
4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213 4.565 4.565 4.213 4.213
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634
4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278 4.634 4.634 4.278 4.278
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649
4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291 4.649 4.649 4.291 4.291
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654
4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296 4.654 4.654 4.296 4.296
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661
4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303 4.661 4.661 4.303 4.303

View File

@ -0,0 +1,342 @@
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417
0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619 0.9417 0.9417 1.0619 1.0619

87
src/CalRadAniG.f90 Normal file
View File

@ -0,0 +1,87 @@
subroutine CalRadAniG(nx, ny, nz, maxvp, vsf, gam, &
dsynR, dsynL, &
goxd, gozd, dvxd, dvzd, &
kmaxRc, kmaxRg, kmaxLc, kmaxLg, &
tRc, tRg, tLc, tLg, &
wavetypeR, wavetypeL, &
igrtR, igrtL, periodsR, periodsL, &
depz, minthk, &
scxfR, sczfR, scxfL, sczfL, &
rcxfR, rczfR, rcxfL, rczfL, &
nrc1R, nrc1L, nsrc1R, nsrc1L, &
kmaxR, kmaxL, nsrc, nrc, &
narR, narL, iwR, iwL, &
rwR, rwL, &
colR, colL, &
writepath, maxnar)
implicit none
integer nx, ny, nz, maxvp, kmaxRc, kmaxRg, kmaxLc, kmaxLg
integer kmaxR, kmaxL
real vsf(nx,ny,nz), gam(nx,ny,nz)
real dsynR(*), dsynL(*)
real goxd, gozd, dvxd, dvzd
real*8 tRc(*), tRg(*), tLc(*), tLg(*)
integer wavetypeR(nsrc,kmaxR), wavetypeL(nsrc,kmaxL)
integer igrtR(nsrc,kmaxR), igrtL(nsrc,kmaxL)
integer periodsR(nsrc,kmaxR), periodsL(nsrc,kmaxL)
real depz(nz)
real minthk
real scxfR(nsrc,kmaxR), sczfR(nsrc,kmaxR)
real scxfL(nsrc,kmaxL), sczfL(nsrc,kmaxL)
real rcxfR(nrc, nsrc, kmaxR), rczfR(nrc, nsrc, kmaxR)
real rcxfL(nrc, nsrc, kmaxL), rczfL(nrc, nsrc, kmaxL)
integer nrc1R(nsrc,kmaxR), nsrc1R(kmaxR)
integer nrc1L(nsrc,kmaxL), nsrc1L(kmaxL)
integer nsrc, nrc
integer narR, narL
integer iwR(*), iwL(*), colR(*), colL(*)
real rwR(*), rwL(*)
integer writepath
integer maxnar
! auxillary variables
integer i, j, k
real,dimension(:,:,:),allocatable::vsv, vsh
integer checkstat
real*8,dimension(:),allocatable:: dum
integer mmaxvp
allocate(vsv(nx,ny,nz), vsh(nx,ny,nz),stat=checkstat)
do i=1,nx
do j=1,ny
do k=1,nz
vsv(i,j,k)=vsf(i,j,k)
vsh(i,j,k)=vsf(i,j,k)*gam(i,j,k)
enddo
enddo
enddo
mmaxvp=maxvp/2
if(writepath.eq.1)open(40,file='raylaiegh_path.out')
call CalSurfG(nx,ny,nz,mmaxvp,vsv,iwR,rwR,colR,dsynR,&
goxd,gozd,dvxd,dvzd,kmaxRc,kmaxRg,0,0,&
tRc,tRg,dum,dum,wavetypeR,igrtR,periodsR,depz,minthk,&
scxfR,sczfR,rcxfR,rczfR,nrc1R,nsrc1R,kmaxR,&
nsrc,nrc,narR,writepath)
if(writepath.eq.1)close(40)
if(writepath.eq.1)open(40,file='love_path.out')
call CalSurfG(nx,ny,nz,mmaxvp,vsh,iwL,rwL,colL,dsynL,&
goxd,gozd,dvxd,dvzd,0,0,kmaxLc,kmaxLg,&
dum,dum,tLc,tLg,wavetypeL,igrtL,periodsL,depz,minthk,&
scxfL,sczfL,rcxfL,rczfL,nrc1L,nsrc1L,kmaxL,&
nsrc,nrc,narL,writepath)
if(writepath.eq.1)close(40)
! deallocate variables
deallocate(vsv,vsh)
end subroutine

2878
src/CalSurfG.f90 Normal file

File diff suppressed because it is too large Load Diff

24
src/Makefile Normal file
View File

@ -0,0 +1,24 @@
CMD = DRadiSurfTomo
OUTFOLD=../bin
FC = gfortran
FFLAGS = -O3 -ffixed-line-length-none -ffloat-store\
-W -fbounds-check -m64 -mcmodel=medium
F90SRCS = lsmrDataModule.f90 lsmrblasInterface.f90\
lsmrblas.f90 lsmrModule.f90 delsph.f90\
aprod.f90 gaussian.f90 main.f90 synRadAni.f90 CalRadAniG.f90
FSRCS = surfdisp96.f
OBJS = $(F90SRCS:%.f90=%.o) $(FSRCS:%.f=%.o) CalSurfG.o
all:$(CMD)
$(CMD):$(OBJS)
$(FC) $^ -fopenmp -o $(OUTFOLD)/$@
%.o: %.f90
$(FC) $(FFLAGS) -fopenmp -c $(@F:.o=.f90) -o $@
%.o: %.f
$(FC) $(FFLAGS) -fopenmp -c $(@F:.o=.f) -o $@
clean:
rm -f *.o $(OUTFOLD)/$(CMD) *.mod

60
src/aprod.f90 Normal file
View File

@ -0,0 +1,60 @@
!c--- This file is from hypoDD by Felix Waldhauser ---------
!c-------------------------Modified by Haijiang Zhang-------
!c Multiply a matrix by a vector
!c Version for use with sparse matrix specified by
!c output of subroutine sparse for use with LSQR
subroutine aprod(mode, m, n, x, y, leniw, lenrw, iw, rw)
implicit none
!c Parameters:
integer mode ! ==1: Compute y = y + a*x
! y is altered without changing x
! ==2: Compute x = x + a(transpose)*y
! x is altered without changing y
integer m, n ! Row and column dimensions of a
real x(n), y(m) ! Input vectors
integer :: leniw
integer lenrw
integer iw(leniw) ! Integer work vector containing:
! iw[1] Number of non-zero elements in a
! iw[2:iw[1]+1] Row indices of non-zero elements
! iw[iw[1]+2:2*iw[1]+1] Column indices
real rw(lenrw) ! [1..iw[1]] Non-zero elements of a
!c Local variables:
integer i1
integer j1
integer k
integer kk
!c set the ranges the indices in vector iw
kk=iw(1)
i1=1
j1=kk+1
!c main iteration loop
do k = 1,kk
if (mode.eq.1) then
!c compute y = y + a*x
y(iw(i1+k)) = y(iw(i1+k)) + rw(k)*x(iw(j1+k))
else
!c compute x = x + a(transpose)*y
x(iw(j1+k)) = x(iw(j1+k)) + rw(k)*y(iw(i1+k))
endif
enddo
! 100 continue
return
end

28
src/delsph.f90 Normal file
View File

@ -0,0 +1,28 @@
subroutine delsph(flat1,flon1,flat2,flon2,del)
implicit none
real,parameter:: R=6371.0
REAL,parameter:: pi=3.1415926535898
real flat1,flat2
real flon1,flon2
real del
real dlat
real dlon
real lat1
real lat2
real a
real c
!dlat=(flat2-flat1)*pi/180
!dlon=(flon2-flon1)*pi/180
!lat1=flat1*pi/180
!lat2=flat2*pi/180
dlat=flat2-flat1
dlon=flon2-flon1
lat1=pi/2-flat1
lat2=pi/2-flat2
a=sin(dlat/2)*sin(dlat/2)+sin(dlon/2)*sin(dlon/2)*cos(lat1)*cos(lat2)
c=2*atan2(sqrt(a),sqrt(1-a))
del=R*c
end subroutine

31
src/gaussian.f90 Normal file
View File

@ -0,0 +1,31 @@
real function gaussian()
implicit none
! real rd
real x1,x2,w,y1
real y2
real n1,n2
integer use_last
integer ii,jj
use_last=0
y2=0
w=2.0
if(use_last.ne.0) then
y1=y2
use_last=0
else
do while (w.ge.1.0)
call random_number(n1)
call random_number(n2)
x1=2.0*n1-1.0
x2=2.0*n2-1.0
w = x1 * x1 + x2 * x2
enddo
w=((-2.0*log(w))/w)**0.5
y1=x1*w
y2=x2*w
use_last=1
endif
gaussian=y1
end function

24
src/lsmrDataModule.f90 Normal file
View File

@ -0,0 +1,24 @@
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! File lsmrDataModule.f90
!
! Defines real(dp) and a few constants for use in other modules.
!
! 24 Oct 2007: Allows floating-point precision dp to be defined
! in exactly one place (here). Note that we need
! use lsmrDataModule
! at the beginning of modules AND inside interfaces.
! zero and one are not currently used by LSMR,
! but this shows how they should be declared
! by a user routine that does need them.
! 16 Jul 2010: LSMR version derived from LSQR equivalent.
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
module lsmrDataModule
implicit none
intrinsic :: selected_real_kind
integer, parameter, public :: dp = selected_real_kind(4)
real(dp), parameter, public :: zero = 0.0_dp, one = 1.0_dp
end module lsmrDataModule

754
src/lsmrModule.f90 Normal file
View File

@ -0,0 +1,754 @@
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! File lsmrModule.f90
!
! LSMR
!
! LSMR solves Ax = b or min ||Ax - b|| with or without damping,
! using the iterative algorithm of David Fong and Michael Saunders:
! http://www.stanford.edu/group/SOL/software/lsmr.html
!
! Maintained by
! David Fong <clfong@stanford.edu>
! Michael Saunders <saunders@stanford.edu>
! Systems Optimization Laboratory (SOL)
! Stanford University
! Stanford, CA 94305-4026, USA
!
! 17 Jul 2010: F90 LSMR derived from F90 LSQR and lsqr.m.
! 07 Sep 2010: Local reorthogonalization now works (localSize > 0).
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
module lsmrModule
use lsmrDataModule, only : dp
use lsmrblasInterface, only : dnrm2, dscal
implicit none
private
public :: LSMR
contains
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! subroutine LSMR ( m, n, Aprod1, Aprod2, b, damp, &
! atol, btol, conlim, itnlim, localSize, nout, &
! x, istop, itn, normA, condA, normr, normAr, normx )
subroutine LSMR ( m, n, leniw, lenrw,iw,rw, b, damp, &
atol, btol, conlim, itnlim, localSize, nout, &
x, istop, itn, normA, condA, normr, normAr, normx )
integer, intent(in) :: leniw
integer, intent(in) :: lenrw
integer, intent(in) :: iw(leniw)
real, intent(in) :: rw(lenrw)
integer, intent(in) :: m, n, itnlim, localSize, nout
integer, intent(out) :: istop, itn
real(dp), intent(in) :: b(m)
real(dp), intent(out) :: x(n)
real(dp), intent(in) :: atol, btol, conlim, damp
real(dp), intent(out) :: normA, condA, normr, normAr, normx
interface
subroutine aprod(mode,m,n,x,y,leniw,lenrw,iw,rw) ! y := y + A*x
use lsmrDataModule, only : dp
integer, intent(in) :: mode,lenrw
integer, intent(in) :: leniw
real, intent(in) :: rw(lenrw)
integer, intent(in) :: iw(leniw)
integer, intent(in) :: m,n
real(dp), intent(inout) :: x(n)
real(dp), intent(inout) :: y(m)
end subroutine aprod
! subroutine Aprod1(m,n,x,y) ! y := y + A*x
! use lsmrDataModule, only : dp
! integer, intent(in) :: m,n
! real(dp), intent(in) :: x(n)
! real(dp), intent(inout) :: y(m)
! end subroutine Aprod1
!
! subroutine Aprod2(m,n,x,y) ! x := x + A'*y
! use lsmrDataModule, only : dp
! integer, intent(in) :: m,n
! real(dp), intent(inout) :: x(n)
! real(dp), intent(in) :: y(m)
! end subroutine Aprod2
end interface
!-------------------------------------------------------------------
! LSMR finds a solution x to the following problems:
!
! 1. Unsymmetric equations: Solve A*x = b
!
! 2. Linear least squares: Solve A*x = b
! in the least-squares sense
!
! 3. Damped least squares: Solve ( A )*x = ( b )
! ( damp*I ) ( 0 )
! in the least-squares sense
!
! where A is a matrix with m rows and n columns, b is an m-vector,
! and damp is a scalar. (All quantities are real.)
! The matrix A is treated as a linear operator. It is accessed
! by means of subroutine calls with the following purpose:
!
! call Aprod1(m,n,x,y) must compute y = y + A*x without altering x.
! call Aprod2(m,n,x,y) must compute x = x + A'*y without altering y.
!
! LSMR uses an iterative method to approximate the solution.
! The number of iterations required to reach a certain accuracy
! depends strongly on the scaling of the problem. Poor scaling of
! the rows or columns of A should therefore be avoided where
! possible.
!
! For example, in problem 1 the solution is unaltered by
! row-scaling. If a row of A is very small or large compared to
! the other rows of A, the corresponding row of ( A b ) should be
! scaled up or down.
!
! In problems 1 and 2, the solution x is easily recovered
! following column-scaling. Unless better information is known,
! the nonzero columns of A should be scaled so that they all have
! the same Euclidean norm (e.g., 1.0).
!
! In problem 3, there is no freedom to re-scale if damp is
! nonzero. However, the value of damp should be assigned only
! after attention has been paid to the scaling of A.
!
! The parameter damp is intended to help regularize
! ill-conditioned systems, by preventing the true solution from
! being very large. Another aid to regularization is provided by
! the parameter condA, which may be used to terminate iterations
! before the computed solution becomes very large.
!
! Note that x is not an input parameter.
! If some initial estimate x0 is known and if damp = 0,
! one could proceed as follows:
!
! 1. Compute a residual vector r0 = b - A*x0.
! 2. Use LSMR to solve the system A*dx = r0.
! 3. Add the correction dx to obtain a final solution x = x0 + dx.
!
! This requires that x0 be available before and after the call
! to LSMR. To judge the benefits, suppose LSMR takes k1 iterations
! to solve A*x = b and k2 iterations to solve A*dx = r0.
! If x0 is "good", norm(r0) will be smaller than norm(b).
! If the same stopping tolerances atol and btol are used for each
! system, k1 and k2 will be similar, but the final solution x0 + dx
! should be more accurate. The only way to reduce the total work
! is to use a larger stopping tolerance for the second system.
! If some value btol is suitable for A*x = b, the larger value
! btol*norm(b)/norm(r0) should be suitable for A*dx = r0.
!
! Preconditioning is another way to reduce the number of iterations.
! If it is possible to solve a related system M*x = b efficiently,
! where M approximates A in some helpful way
! (e.g. M - A has low rank or its elements are small relative to
! those of A), LSMR may converge more rapidly on the system
! A*M(inverse)*z = b,
! after which x can be recovered by solving M*x = z.
!
! NOTE: If A is symmetric, LSMR should not be used!
! Alternatives are the symmetric conjugate-gradient method (CG)
! and/or SYMMLQ.
! SYMMLQ is an implementation of symmetric CG that applies to
! any symmetric A and will converge more rapidly than LSMR.
! If A is positive definite, there are other implementations of
! symmetric CG that require slightly less work per iteration
! than SYMMLQ (but will take the same number of iterations).
!
!
! Notation
! --------
! The following quantities are used in discussing the subroutine
! parameters:
!
! Abar = ( A ), bbar = (b)
! (damp*I) (0)
!
! r = b - A*x, rbar = bbar - Abar*x
!
! normr = sqrt( norm(r)**2 + damp**2 * norm(x)**2 )
! = norm( rbar )
!
! eps = the relative precision of floating-point arithmetic.
! On most machines, eps is about 1.0e-7 and 1.0e-16
! in single and double precision respectively.
! We expect eps to be about 1e-16 always.
!
! LSMR minimizes the function normr with respect to x.
!
!
! Parameters
! ----------
! m input m, the number of rows in A.
!
! n input n, the number of columns in A.
!
! Aprod1, Aprod2 See above.
!
! damp input The damping parameter for problem 3 above.
! (damp should be 0.0 for problems 1 and 2.)
! If the system A*x = b is incompatible, values
! of damp in the range 0 to sqrt(eps)*norm(A)
! will probably have a negligible effect.
! Larger values of damp will tend to decrease
! the norm of x and reduce the number of
! iterations required by LSMR.
!
! The work per iteration and the storage needed
! by LSMR are the same for all values of damp.
!
! b(m) input The rhs vector b.
!
! x(n) output Returns the computed solution x.
!
! atol input An estimate of the relative error in the data
! defining the matrix A. For example, if A is
! accurate to about 6 digits, set atol = 1.0e-6.
!
! btol input An estimate of the relative error in the data
! defining the rhs b. For example, if b is
! accurate to about 6 digits, set btol = 1.0e-6.
!
! conlim input An upper limit on cond(Abar), the apparent
! condition number of the matrix Abar.
! Iterations will be terminated if a computed
! estimate of cond(Abar) exceeds conlim.
! This is intended to prevent certain small or
! zero singular values of A or Abar from
! coming into effect and causing unwanted growth
! in the computed solution.
!
! conlim and damp may be used separately or
! together to regularize ill-conditioned systems.
!
! Normally, conlim should be in the range
! 1000 to 1/eps.
! Suggested value:
! conlim = 1/(100*eps) for compatible systems,
! conlim = 1/(10*sqrt(eps)) for least squares.
!
! Note: Any or all of atol, btol, conlim may be set to zero.
! The effect will be the same as the values eps, eps, 1/eps.
!
! itnlim input An upper limit on the number of iterations.
! Suggested value:
! itnlim = n/2 for well-conditioned systems
! with clustered singular values,
! itnlim = 4*n otherwise.
!
! localSize input No. of vectors for local reorthogonalization.
! 0 No reorthogonalization is performed.
! >0 This many n-vectors "v" (the most recent ones)
! are saved for reorthogonalizing the next v.
! localSize need not be more than min(m,n).
! At most min(m,n) vectors will be allocated.
!
! nout input File number for printed output. If positive,
! a summary will be printed on file nout.
!
! istop output An integer giving the reason for termination:
!
! 0 x = 0 is the exact solution.
! No iterations were performed.
!
! 1 The equations A*x = b are probably compatible.
! Norm(A*x - b) is sufficiently small, given the
! values of atol and btol.
!
! 2 damp is zero. The system A*x = b is probably
! not compatible. A least-squares solution has
! been obtained that is sufficiently accurate,
! given the value of atol.
!
! 3 damp is nonzero. A damped least-squares
! solution has been obtained that is sufficiently
! accurate, given the value of atol.
!
! 4 An estimate of cond(Abar) has exceeded conlim.
! The system A*x = b appears to be ill-conditioned,
! or there could be an error in Aprod1 or Aprod2.
!
! 5 The iteration limit itnlim was reached.
!
! itn output The number of iterations performed.
!
! normA output An estimate of the Frobenius norm of Abar.
! This is the square-root of the sum of squares
! of the elements of Abar.
! If damp is small and the columns of A
! have all been scaled to have length 1.0,
! normA should increase to roughly sqrt(n).
! A radically different value for normA may
! indicate an error in Aprod1 or Aprod2.
!
! condA output An estimate of cond(Abar), the condition
! number of Abar. A very high value of condA
! may again indicate an error in Aprod1 or Aprod2.
!
! normr output An estimate of the final value of norm(rbar),
! the function being minimized (see notation
! above). This will be small if A*x = b has
! a solution.
!
! normAr output An estimate of the final value of
! norm( Abar'*rbar ), the norm of
! the residual for the normal equations.
! This should be small in all cases. (normAr
! will often be smaller than the true value
! computed from the output vector x.)
!
! normx output An estimate of norm(x) for the final solution x.
!
! Subroutines and functions used
! ------------------------------
! BLAS dscal, dnrm2
! USER Aprod1, Aprod2
!
! Precision
! ---------
! The number of iterations required by LSMR will decrease
! if the computation is performed in higher precision.
! At least 15-digit arithmetic should normally be used.
! "real(dp)" declarations should normally be 8-byte words.
! If this ever changes, the BLAS routines dnrm2, dscal
! (Lawson, et al., 1979) will also need to be changed.
!
!
! Reference
! ---------
! http://www.stanford.edu/group/SOL/software/lsmr.html
! ------------------------------------------------------------------
!
! LSMR development:
! 21 Sep 2007: Fortran 90 version of LSQR implemented.
! Aprod1, Aprod2 implemented via f90 interface.
! 17 Jul 2010: LSMR derived from LSQR and lsmr.m.
! 07 Sep 2010: Local reorthogonalization now working.
!-------------------------------------------------------------------
intrinsic :: abs, dot_product, min, max, sqrt
! Local arrays and variables
real(dp) :: h(n), hbar(n), u(m), v(n), w(n), localV(n,min(localSize,m,n))
logical :: damped, localOrtho, localVQueueFull, prnt, show
integer :: i, localOrthoCount, localOrthoLimit, localPointer, localVecs, &
pcount, pfreq
real(dp) :: alpha, alphabar, alphahat, &
beta, betaacute, betacheck, betad, betadd, betahat, &
normb, c, cbar, chat, ctildeold, ctol, &
d, maxrbar, minrbar, normA2, &
rho, rhobar, rhobarold, rhodold, rhoold, rhotemp, &
rhotildeold, rtol, s, sbar, shat, stildeold, &
t1, taud, tautildeold, test1, test2, test3, &
thetabar, thetanew, thetatilde, thetatildeold, &
zeta, zetabar, zetaold
! Local constants
real(dp), parameter :: zero = 0.0_dp, one = 1.0_dp
character(len=*), parameter :: enter = ' Enter LSMR. '
character(len=*), parameter :: exitt = ' Exit LSMR. '
character(len=*), parameter :: msg(0:7) = &
(/ 'The exact solution is x = 0 ', &
'Ax - b is small enough, given atol, btol ', &
'The least-squares solution is good enough, given atol', &
'The estimate of cond(Abar) has exceeded conlim ', &
'Ax - b is small enough for this machine ', &
'The LS solution is good enough for this machine ', &
'Cond(Abar) seems to be too large for this machine ', &
'The iteration limit has been reached ' /)
!-------------------------------------------------------------------
! Initialize.
localVecs = min(localSize,m,n)
show = nout > 0
if (show) then
write(nout, 1000) enter,m,n,damp,atol,conlim,btol,itnlim,localVecs
end if
pfreq = 20 ! print frequency (for repeating the heading)
pcount = 0 ! print counter
damped = damp > zero !
!-------------------------------------------------------------------
! Set up the first vectors u and v for the bidiagonalization.
! These satisfy beta*u = b, alpha*v = A(transpose)*u.
!-------------------------------------------------------------------
u(1:m) = b(1:m)
v(1:n) = zero
x(1:n) = zero
alpha = zero
beta = dnrm2 (m, u, 1)
if (beta > zero) then
call dscal (m, (one/beta), u, 1)
! call Aprod2(m, n, v, u) ! v = A'*u
call aprod(2,m,n,v,u,leniw,lenrw,iw,rw)
alpha = dnrm2 (n, v, 1)
end if
if (alpha > zero) then
call dscal (n, (one/alpha), v, 1)
w = v
end if
normAr = alpha*beta
if (normAr == zero) go to 800
! Initialization for local reorthogonalization.
localOrtho = .false.
if (localVecs > 0) then
localPointer = 1
localOrtho = .true.
localVQueueFull = .false.
localV(:,1) = v
end if
! Initialize variables for 1st iteration.
itn = 0
zetabar = alpha*beta
alphabar = alpha
rho = 1
rhobar = 1
cbar = 1
sbar = 0
h = v
hbar(1:n) = zero
x(1:n) = zero
! Initialize variables for estimation of ||r||.
betadd = beta
betad = 0
rhodold = 1
tautildeold = 0
thetatilde = 0
zeta = 0
d = 0
! Initialize variables for estimation of ||A|| and cond(A).
normA2 = alpha**2
maxrbar = 0_dp
minrbar = 1e+30_dp
! Items for use in stopping rules.
normb = beta
istop = 0
ctol = zero
if (conlim > zero) ctol = one/conlim
normr = beta
! Exit if b=0 or A'b = 0.
normAr = alpha * beta
if (normAr == 0) then
if (show) then
write(nout,'(a)') msg(1)
end if
return
end if
! Heading for iteration log.
if (show) then
if (damped) then
write(nout,1300)
else
write(nout,1200)
end if
test1 = one
test2 = alpha/beta
write(nout, 1500) itn,x(1),normr,normAr,test1,test2
end if
!===================================================================
! Main iteration loop.
!===================================================================
do
itn = itn + 1
!----------------------------------------------------------------
! Perform the next step of the bidiagonalization to obtain the
! next beta, u, alpha, v. These satisfy
! beta*u = A*v - alpha*u,
! alpha*v = A'*u - beta*v.
!----------------------------------------------------------------
call dscal (m,(- alpha), u, 1)
! call Aprod1(m, n, v, u) ! u = A*v
call aprod ( 1,m,n,v,u,leniw,lenrw,iw,rw )
beta = dnrm2 (m, u, 1)
if (beta > zero) then
call dscal (m, (one/beta), u, 1)
if (localOrtho) then ! Store v into the circular buffer localV.
call localVEnqueue ! Store old v for local reorthog'n of new v.
end if
call dscal (n, (- beta), v, 1)
!call Aprod2(m, n, v, u) ! v = A'*u
call aprod ( 2,m,n,v,u,leniw,lenrw,iw,rw )
if (localOrtho) then ! Perform local reorthogonalization of V.
call localVOrtho ! Local-reorthogonalization of new v.
end if
alpha = dnrm2 (n, v, 1)
if (alpha > zero) then
call dscal (n, (one/alpha), v, 1)
end if
end if
! At this point, beta = beta_{k+1}, alpha = alpha_{k+1}.
!----------------------------------------------------------------
! Construct rotation Qhat_{k,2k+1}.
alphahat = d2norm(alphabar, damp)
chat = alphabar/alphahat
shat = damp/alphahat
! Use a plane rotation (Q_i) to turn B_i to R_i.
rhoold = rho
rho = d2norm(alphahat, beta)
c = alphahat/rho
s = beta/rho
thetanew = s*alpha
alphabar = c*alpha
! Use a plane rotation (Qbar_i) to turn R_i^T into R_i^bar.
rhobarold = rhobar
zetaold = zeta
thetabar = sbar*rho
rhotemp = cbar*rho
rhobar = d2norm(cbar*rho, thetanew)
cbar = cbar*rho/rhobar
sbar = thetanew/rhobar
zeta = cbar*zetabar
zetabar = - sbar*zetabar
! Update h, h_hat, x.
hbar = h - (thetabar*rho/(rhoold*rhobarold))*hbar
x = x + (zeta/(rho*rhobar))*hbar
h = v - (thetanew/rho)*h
! Estimate ||r||.
! Apply rotation Qhat_{k,2k+1}.
betaacute = chat* betadd
betacheck = - shat* betadd
! Apply rotation Q_{k,k+1}.
betahat = c*betaacute
betadd = - s*betaacute
! Apply rotation Qtilde_{k-1}.
! betad = betad_{k-1} here.
thetatildeold = thetatilde
rhotildeold = d2norm(rhodold, thetabar)
ctildeold = rhodold/rhotildeold
stildeold = thetabar/rhotildeold
thetatilde = stildeold* rhobar
rhodold = ctildeold* rhobar
betad = - stildeold*betad + ctildeold*betahat
! betad = betad_k here.
! rhodold = rhod_k here.
tautildeold = (zetaold - thetatildeold*tautildeold)/rhotildeold
taud = (zeta - thetatilde*tautildeold)/rhodold
d = d + betacheck**2
normr = sqrt(d + (betad - taud)**2 + betadd**2)
! Estimate ||A||.
normA2 = normA2 + beta**2
normA = sqrt(normA2)
normA2 = normA2 + alpha**2
! Estimate cond(A).
maxrbar = max(maxrbar,rhobarold)
if (itn > 1) then
minrbar = min(minrbar,rhobarold)
end if
condA = max(maxrbar,rhotemp)/min(minrbar,rhotemp)
!----------------------------------------------------------------
! Test for convergence.
!----------------------------------------------------------------
! Compute norms for convergence testing.
normAr = abs(zetabar)
normx = dnrm2(n, x, 1)
! Now use these norms to estimate certain other quantities,
! some of which will be small near a solution.
test1 = normr /normb
test2 = normAr/(normA*normr)
test3 = one/condA
t1 = test1/(one + normA*normx/normb)
rtol = btol + atol*normA*normx/normb
! The following tests guard against extremely small values of
! atol, btol or ctol. (The user may have set any or all of
! the parameters atol, btol, conlim to 0.)
! The effect is equivalent to the normAl tests using
! atol = eps, btol = eps, conlim = 1/eps.
if (itn >= itnlim) istop = 7
if (one+test3 <= one) istop = 6
if (one+test2 <= one) istop = 5
if (one+t1 <= one) istop = 4
! Allow for tolerances set by the user.
if ( test3 <= ctol) istop = 3
if ( test2 <= atol) istop = 2
if ( test1 <= rtol) istop = 1
!----------------------------------------------------------------
! See if it is time to print something.
!----------------------------------------------------------------
prnt = .false.
if (show) then
if (n <= 40) prnt = .true.
if (itn <= 10) prnt = .true.
if (itn >= itnlim-10) prnt = .true.
if (mod(itn,10) == 0) prnt = .true.
if (test3 <= 1.1*ctol) prnt = .true.
if (test2 <= 1.1*atol) prnt = .true.
if (test1 <= 1.1*rtol) prnt = .true.
if (istop /= 0) prnt = .true.
if (prnt) then ! Print a line for this iteration
if (pcount >= pfreq) then ! Print a heading first
pcount = 0
if (damped) then
write(nout,1300)
else
write(nout,1200)
end if
end if
pcount = pcount + 1
write(nout,1500) itn,x(1),normr,normAr,test1,test2,normA,condA
end if
end if
if (istop /= 0) exit
end do
!===================================================================
! End of iteration loop.
!===================================================================
! Come here if normAr = 0, or if normal exit.
800 if (damped .and. istop==2) istop=3 ! Decide if istop = 2 or 3.
if (show) then ! Print the stopping condition.
write(nout, 2000) &
exitt,istop,itn, &
exitt,normA,condA, &
exitt,normb, normx, &
exitt,normr,normAr
write(nout, 3000) &
exitt, msg(istop)
end if
return
1000 format(// a, ' Least-squares solution of Ax = b' &
/ ' The matrix A has', i7, ' rows and', i7, ' columns' &
/ ' damp =', es22.14 &
/ ' atol =', es10.2, 15x, 'conlim =', es10.2 &
/ ' btol =', es10.2, 15x, 'itnlim =', i10 &
/ ' localSize (no. of vectors for local reorthogonalization) =', i7)
1200 format(/ " Itn x(1) norm r A'r ", &
' Compatible LS norm A cond A')
1300 format(/ " Itn x(1) norm rbar Abar'rbar", &
' Compatible LS norm Abar cond Abar')
1500 format(i6, 2es17.9, 5es10.2)
2000 format(/ a, 5x, 'istop =', i2, 15x, 'itn =', i8 &
/ a, 5x, 'normA =', es12.5, 5x, 'condA =', es12.5 &
/ a, 5x, 'normb =', es12.5, 5x, 'normx =', es12.5 &
/ a, 5x, 'normr =', es12.5, 5x, 'normAr =', es12.5)
3000 format(a, 5x, a)
contains
function d2norm( a, b )
real(dp) :: d2norm
real(dp), intent(in) :: a, b
!-------------------------------------------------------------------
! d2norm returns sqrt( a**2 + b**2 )
! with precautions to avoid overflow.
!
! 21 Mar 1990: First version.
! 17 Sep 2007: Fortran 90 version.
! 24 Oct 2007: User real(dp) instead of compiler option -r8.
!-------------------------------------------------------------------
intrinsic :: abs, sqrt
real(dp) :: scale
real(dp), parameter :: zero = 0.0_dp
scale = abs(a) + abs(b)
if (scale == zero) then
d2norm = zero
else
d2norm = scale*sqrt((a/scale)**2 + (b/scale)**2)
end if
end function d2norm
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine localVEnqueue
! Store v into the circular buffer localV.
if (localPointer < localVecs) then
localPointer = localPointer + 1
else
localPointer = 1
localVQueueFull = .true.
end if
localV(:,localPointer) = v
end subroutine localVEnqueue
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
subroutine localVOrtho
! Perform local reorthogonalization of current v.
real(dp) :: d
if (localVQueueFull) then
localOrthoLimit = localVecs
else
localOrthoLimit = localPointer
end if
do localOrthoCount = 1, localOrthoLimit
d = dot_product(v,localV(:,localOrthoCount))
v = v - d * localV(:,localOrthoCount)
end do
end subroutine localVOrtho
end subroutine LSMR
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
end module LSMRmodule

360
src/lsmrblas.f90 Normal file
View File

@ -0,0 +1,360 @@
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! File lsmrblas.f90 (double precision)
!
! This file contains the following BLAS routines
! dcopy, ddot, dnrm2, dscal
! required by subroutines LSMR and Acheck.
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
!
!! DCOPY copies a vector X to a vector Y.
!
! Discussion:
! This routine uses double precision real arithmetic.
! The routine uses unrolled loops for increments equal to one.
!
! Modified:
! 16 May 2005
!
! Author:
! Jack Dongarra
! Fortran90 translation by John Burkardt.
!
! Reference:
!
! Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,
! LINPACK User's Guide,
! SIAM, 1979,
! ISBN13: 978-0-898711-72-1,
! LC: QA214.L56.
!
! Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
! Algorithm 539,
! Basic Linear Algebra Subprograms for Fortran Usage,
! ACM Transactions on Mathematical Software,
! Volume 5, Number 3, September 1979, pages 308-323.
!
! Parameters:
!
! Input, integer N, the number of elements in DX and DY.
!
! Input, real ( kind = 8 ) DX(*), the first vector.
!
! Input, integer INCX, the increment between successive entries of DX.
!
! Output, real ( kind = 8 ) DY(*), the second vector.
!
! Input, integer INCY, the increment between successive entries of DY.
subroutine dcopy(n,dx,incx,dy,incy)
implicit none
! double precision dx(*),dy(*)
real(4) dx(*),dy(*)
integer i,incx,incy,ix,iy,m,n
if ( n <= 0 ) then
return
end if
if ( incx == 1 .and. incy == 1 ) then
m = mod ( n, 7 )
if ( m /= 0 ) then
dy(1:m) = dx(1:m)
end if
do i = m+1, n, 7
dy(i) = dx(i)
dy(i + 1) = dx(i + 1)
dy(i + 2) = dx(i + 2)
dy(i + 3) = dx(i + 3)
dy(i + 4) = dx(i + 4)
dy(i + 5) = dx(i + 5)
dy(i + 6) = dx(i + 6)
end do
else
if ( 0 <= incx ) then
ix = 1
else
ix = ( -n + 1 ) * incx + 1
end if
if ( 0 <= incy ) then
iy = 1
else
iy = ( -n + 1 ) * incy + 1
end if
do i = 1, n
dy(iy) = dx(ix)
ix = ix + incx
iy = iy + incy
end do
end if
return
end subroutine dcopy
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!! DDOT forms the dot product of two vectors.
!
! Discussion:
! This routine uses double precision real arithmetic.
! This routine uses unrolled loops for increments equal to one.
!
! Modified:
! 16 May 2005
!
! Author:
! Jack Dongarra
! Fortran90 translation by John Burkardt.
!
! Reference:
! Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,
! LINPACK User's Guide,
! SIAM, 1979,
! ISBN13: 978-0-898711-72-1,
! LC: QA214.L56.
!
! Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
! Algorithm 539,
! Basic Linear Algebra Subprograms for Fortran Usage,
! ACM Transactions on Mathematical Software,
! Volume 5, Number 3, September 1979, pages 308-323.
!
! Parameters:
!
! Input, integer N, the number of entries in the vectors.
!
! Input, real ( kind = 8 ) DX(*), the first vector.
!
! Input, integer INCX, the increment between successive entries in DX.
!
! Input, real ( kind = 8 ) DY(*), the second vector.
!
! Input, integer INCY, the increment between successive entries in DY.
!
! Output, real ( kind = 8 ) DDOT, the sum of the product of the
! corresponding entries of DX and DY.
! double precision function ddot(n,dx,incx,dy,incy)
real(4) function ddot(n,dx,incx,dy,incy)
implicit none
! double precision dx(*),dy(*),dtemp
real(4) dx(*),dy(*),dtemp
integer i,incx,incy,ix,iy,m,n
ddot = 0.0d0
dtemp = 0.0d0
if ( n <= 0 ) then
return
end if
! Code for unequal increments or equal increments
! not equal to 1.
if ( incx /= 1 .or. incy /= 1 ) then
if ( 0 <= incx ) then
ix = 1
else
ix = ( - n + 1 ) * incx + 1
end if
if ( 0 <= incy ) then
iy = 1
else
iy = ( - n + 1 ) * incy + 1
end if
do i = 1, n
dtemp = dtemp + dx(ix) * dy(iy)
ix = ix + incx
iy = iy + incy
end do
! Code for both increments equal to 1.
else
m = mod ( n, 5 )
do i = 1, m
dtemp = dtemp + dx(i) * dy(i)
end do
do i = m+1, n, 5
dtemp = dtemp + dx(i)*dy(i) + dx(i+1)*dy(i+1) + dx(i+2)*dy(i+2) &
+ dx(i+3)*dy(i+3) + dx(i+4)*dy(i+4)
end do
end if
ddot = dtemp
return
end function ddot
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!*****************************************************************************80
!
!! DNRM2 returns the euclidean norm of a vector.
!
! Discussion:
! This routine uses double precision real arithmetic.
! DNRM2 ( X ) = sqrt ( X' * X )
!
! Modified:
! 16 May 2005
!
! Author:
! Sven Hammarling
! Fortran90 translation by John Burkardt.
!
! Reference:
! Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,
! LINPACK User's Guide,
! SIAM, 1979,
! ISBN13: 978-0-898711-72-1,
! LC: QA214.L56.
!
! Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
! Algorithm 539,
! Basic Linear Algebra Subprograms for Fortran Usage,
! ACM Transactions on Mathematical Software,
! Volume 5, Number 3, September 1979, pages 308-323.
!
! Parameters:
!
! Input, integer N, the number of entries in the vector.
!
! Input, real ( kind = 8 ) X(*), the vector whose norm is to be computed.
!
! Input, integer INCX, the increment between successive entries of X.
!
! Output, real ( kind = 8 ) DNRM2, the Euclidean norm of X.
!
! double precision function dnrm2 ( n, x, incx)
real(4) function dnrm2 ( n, x, incx)
implicit none
integer ix,n,incx
! double precision x(*), ssq,absxi,norm,scale
real(4) x(*), ssq,absxi,norm,scale
if ( n < 1 .or. incx < 1 ) then
norm = 0.d0
else if ( n == 1 ) then
norm = abs ( x(1) )
else
scale = 0.d0
ssq = 1.d0
do ix = 1, 1 + ( n - 1 )*incx, incx
if ( x(ix) /= 0.d0 ) then
absxi = abs ( x(ix) )
if ( scale < absxi ) then
ssq = 1.d0 + ssq * ( scale / absxi )**2
scale = absxi
else
ssq = ssq + ( absxi / scale )**2
end if
end if
end do
norm = scale * sqrt ( ssq )
end if
dnrm2 = norm
return
end function dnrm2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! DSCAL scales a vector by a constant.
!
! Discussion:
! This routine uses double precision real arithmetic.
!
! Modified:
! 08 April 1999
!
! Author:
! Jack Dongarra
! Fortran90 translation by John Burkardt.
!
! Reference:
! Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,
! LINPACK User's Guide,
! SIAM, 1979,
! ISBN13: 978-0-898711-72-1,
! LC: QA214.L56.
!
! Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
! Algorithm 539,
! Basic Linear Algebra Subprograms for Fortran Usage,
! ACM Transactions on Mathematical Software,
! Volume 5, Number 3, September 1979, pages 308-323.
!
! Parameters:
!
! Input, integer N, the number of entries in the vector.
!
! Input, real ( kind = 8 ) SA, the multiplier.
!
! Input/output, real ( kind = 8 ) X(*), the vector to be scaled.
!
! Input, integer INCX, the increment between successive entries of X.
!
subroutine dscal(n,sa,x,incx)
implicit none
integer i
integer incx
integer ix
integer m
integer n
!double precision sa
!double precision x(*)
real(4) sa
real(4) x(*)
if ( n <= 0 ) then
return
else if ( incx == 1 ) then
m = mod ( n, 5 )
x(1:m) = sa * x(1:m)
do i = m+1, n, 5
x(i) = sa * x(i)
x(i+1) = sa * x(i+1)
x(i+2) = sa * x(i+2)
x(i+3) = sa * x(i+3)
x(i+4) = sa * x(i+4)
end do
else
if ( 0 <= incx ) then
ix = 1
else
ix = ( - n + 1 ) * incx + 1
end if
do i = 1, n
x(ix) = sa * x(ix)
ix = ix + incx
end do
end if
return
end subroutine dscal
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

41
src/lsmrblasInterface.f90 Normal file
View File

@ -0,0 +1,41 @@
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! File lsmrblasInterface.f90
!
! BLAS1 Interfaces: ddot dnrm2 dscal
!
! Maintained by Michael Saunders <saunders@stanford.edu>.
!
! 19 Dec 2008: lsqrblasInterface module implemented.
! Metcalf and Reid recommend putting interfaces in a module.
! 16 Jul 2010: LSMR version derived from LSQR equivalent.
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
module lsmrblasInterface
implicit none
public :: ddot, dnrm2, dscal
interface ! Level 1 BLAS
function ddot (n,dx,incx,dy,incy)
use lsmrDataModule, only : dp
integer, intent(in) :: n,incx,incy
real(dp), intent(in) :: dx(*),dy(*)
real(dp) :: ddot
end function ddot
function dnrm2 (n,dx,incx)
use lsmrDataModule, only : dp
integer, intent(in) :: n,incx
real(dp), intent(in) :: dx(*)
real(dp) :: dnrm2
end function dnrm2
subroutine dscal (n,sa,x,incx)
use lsmrDataModule, only : dp
integer, intent(in) :: n,incx
real(dp), intent(in) :: sa
real(dp), intent(inout) :: x(*)
end subroutine dscal
end interface
end module lsmrblasInterface

789
src/main.f90 Normal file
View File

@ -0,0 +1,789 @@
program DRadiSurfTomo
use lsmrModule, only:lsmr
use lsmrblasInterface, only: dnrm2
implicit none
! define variable
! file
character inputfile*80
character logfile*100
character outmodel*100
character outsyn*100
logical ex ! if file exsit
character dummy*40
character datafileR*80
character datafileL*80
! model
integer nx,ny,nz ! dimension of model
real goxd, gozd
real dvxd, dvzd
real, dimension(:), allocatable:: depz
! data
integer nsrc, nrc
integer kmax, kmaxRc, kmaxRg, kmaxLc, kmaxLg ! num of periods
real*8,dimension(:), allocatable:: tRc, tRg, tLc, tLg ! periods
! inversion
real lambda1, lambda2 ! damp for different parameters, see note
real weight1, weight2
integer itn ! iteration for large matrix inversion
integer iter, maxiter ! iteration number
real minthk
integer nout
real sta1_lat, sta1_lon, sta2_lat, sta2_lon
integer dall, dallR, dallL
real,parameter:: pi=3.1415926535898
integer checkstat
real,dimension(:),allocatable:: dsyn, cbst, wt, dtres, datweight
real,dimension(:),allocatable:: dsynR, dsynL
real,dimension(:),allocatable:: distR, distL, obstR, obstL
real,dimension(:),allocatable:: pvallR, pvallL, depRp
real, dimension (:,:), allocatable :: scxfR,sczfR, scxfL, sczfL
real, dimension (:,:,:), allocatable :: rcxfR,rczfR, rcxfL, rczfL
integer,dimension(:,:),allocatable::wavetypeR,igrtR,nrc1R
integer,dimension(:,:),allocatable::wavetypeL,igrtL,nrc1L
integer,dimension(:),allocatable::nsrc1R, nsrc1L
integer,dimension(:,:),allocatable::periodsR, periodsL
real,dimension(:),allocatable::rwR, rwL, rw
integer,dimension(:),allocatable::iwR, iwL,colR, colL, iw, col
real,dimension(:),allocatable::dv,norm
real,dimension(:,:,:),allocatable::vsf, gam
real,dimension(:,:,:),allocatable::vsftrue, gamtrue
integer veltp, wavetp
integer ifsyn
real noiselevel
real spfra
real Minvel, Maxvel, Mingam, Maxgam
real threshold0, threshold
integer maxnar, maxvp
integer writepath
integer narR, narL, nar
integer lenrw,leniw
real atol,btol
real conlim
integer istop
integer itnlim, localSize
real acond, anorm, xnorm
real damp, rnorm, arnorm
real mean,std_devs
integer m,n
! auxillary variable
integer ii, jj, kk
integer i, j, k
real velvalue
integer knum, knumo, err
integer istep, istep1, istep2
integer period
character line*200
character str1
real dist1
integer kmaxR, kmaxL
integer nvx, nvy, nvz
integer count3, count4
real, parameter::coef=8.0
real rough1, rough2
! open files
open(34,file='IterVel.out')
nout=36
open(nout,file='lsmr.txt')
! output some information
write(*,*)
write(*,*),' DRadiSurfTomo (2021/08/08)'
write(*,*)
! read input file
if (iargc()<1) then
write(*,*) 'input file [DRadiSurfTomo.in(default)]'
read(*,'(a)') inputfile
if (len_trim(inputfile)<=1) then
inputfile='DRadiSurfTomo.in'
else
inputfile=inputfile(1:len_trim(inputfile))
endif
else
call getarg(1,inputfile)
endif
inquire(file=inputfile,exist=ex)
if(.not. ex) stop 'unable to open the inputfile (*.in)'
open(10,file=inputfile,status='old')
read(10,'(a30)')dummy
read(10,'(a30)')dummy
read(10,'(a30)')dummy
read(10,*)datafileR
read(10,*)datafileL
read(10,*)nx, ny, nz
read(10,*)goxd,gozd
read(10,*)dvxd,dvzd
read(10,*)nsrc
read(10,*)lambda1, lambda2, damp
read(10,*)minthk
read(10,*)Minvel, Maxvel
read(10,*)Mingam, Maxgam
read(10,*)maxiter
read(10,*)spfra
read(10,*)kmaxRc
if(kmaxRc.gt.0) then
allocate(tRc(kmaxRc),stat=checkstat)
if (checkstat > 0) stop 'error allocating tRc'
read(10,*)(tRc(i),i=1,kmaxRc)
write(*,*) 'Rayleigh wave phase velocity used, periods:(s)'
write(*,'(50f6.2)')(tRc(i),i=1,kmaxRc)
endif
read(10,*)kmaxRg
if(kmaxRg.gt.0) then
allocate(tRg(kmaxRg),stat=checkstat)
if (checkstat > 0) stop 'error allocating tRg'
read(10,*)(tRg(i),i=1,kmaxRg)
write(*,*) 'Rayleigh wave group velocity used, periods:(s)'
write(*,'(50f6.2)')(tRg(i),i=1,kmaxRg)
endif
read(10,*)kmaxLc
if(kmaxLc.gt.0) then
allocate(tLc(kmaxLc),stat=checkstat)
if (checkstat > 0) stop 'error allocating tLc'
read(10,*)(tLc(i),i=1,kmaxLc)
write(*,*) 'Love wave phase velocity used, periods:(s)'
write(*,'(50f6.2)')(tLc(i),i=1,kmaxLc)
endif
read(10,*)kmaxLg
if(kmaxLg.gt.0) then
allocate(tLg(kmaxLg),stat=checkstat)
if (checkstat > 0) stop 'error allocating tLg'
read(10,*)(tLg(i),i=1,kmaxLg)
write(*,*) 'Love wave group velocity used, periods:(s)'
write(*,'(50f6.2)')(tLg(i),i=1,kmaxLg)
endif
read(10,*)ifsyn
read(10,*)noiselevel
read(10,*)threshold0
close(10)
nvx=nx-2;
nvy=ny-2;
nvz=nz-1;
nrc=nsrc
kmax=kmaxRc+kmaxRg+kmaxLc+kmaxLg
kmaxR=kmaxRc+kmaxRg
kmaxL=kmaxLc+kmaxLg
! read measurements
open(unit=87,file=datafileR,status='old')
allocate(scxfR(nsrc,kmaxR),sczfR(nsrc,kmaxR), stat=checkstat)
allocate(scxfL(nsrc,kmaxL),sczfL(nsrc,kmaxL), stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate scxf and sczf'
endif
allocate(rcxfR(nrc,nsrc,kmaxR),rczfR(nrc,nsrc,kmaxR),stat=checkstat)
allocate(rcxfL(nrc,nsrc,kmaxL),rczfL(nrc,nsrc,kmaxL),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate rcxf and rczf'
endif
allocate(periodsR(nsrc,kmaxR),wavetypeR(nsrc,kmaxR),&
nrc1R(nsrc,kmaxR),nsrc1R(kmaxR),&
igrtR(nsrc,kmaxR),stat=checkstat)
allocate(periodsL(nsrc,kmaxL),wavetypeL(nsrc,kmaxL),&
nrc1L(nsrc,kmaxL),nsrc1L(kmaxL),&
igrtL(nsrc,kmaxL),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate periods, wavetype nrc1, nsrc1, igrt'
endif
allocate(obstR(nrc*nsrc*kmaxR),distR(nrc*nsrc*kmaxR),&
stat=checkstat)
allocate(obstL(nrc*nsrc*kmaxL),distL(nrc*nsrc*kmaxL),&
stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate obst, dist '
endif
allocate(pvallR(nrc*nsrc*kmaxR),depRp(nrc*nsrc*kmax),&
pvallL(nrc*nsrc*kmaxL), &
stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate pvall, depRp'
endif
! read Rayleigh wave
istep=0
istep1=0
istep2=0
dall=0
knumo=12345
knum=0
do
read(87,'(a)',iostat=err) line
if(err.eq.0)then
if(line(1:1).eq.'#')then
read(line,*)str1,sta1_lat,sta1_lon,period,wavetp,veltp
if(wavetp.eq.2.and.veltp.eq.0) knum=period
if(wavetp.eq.2.and.veltp.eq.1) knum=kmaxRc+period
if(knum.ne.knumo)then
istep=0
istep2=istep2+1
endif
istep=istep+1
istep1=0
sta1_lat=(90.0-sta1_lat)*pi/180.0
sta1_lon=sta1_lon*pi/180.0
scxfR(istep,knum)=sta1_lat
sczfR(istep,knum)=sta1_lon
periodsR(istep,knum)=period
wavetypeR(istep,knum)=wavetp
igrtR(istep,knum)=veltp
nsrc1R(knum)=istep
knumo=knum
else
read(line,*) sta2_lat,sta2_lon,velvalue
istep1=istep1+1
dall=dall+1
sta2_lat=(90.0-sta2_lat)*pi/180.0
sta2_lon=sta2_lon*pi/180.0
rcxfR(istep1,istep,knum)=sta2_lat
rczfR(istep1,istep,knum)=sta2_lon
call delsph(sta1_lat,sta1_lon,sta2_lat,sta2_lon,dist1)
distR(dall)=dist1
obstR(dall)=dist1/velvalue
pvallR(dall)=velvalue
nrc1R(istep,knum)=istep1
endif
else
exit
endif
enddo
close(87)
dallR=dall
write(*,'(a,i7)')'# Rayleigh wave measurements:', dallR
! read Love wave
open(unit=97,file=datafileL,status='old')
istep=0
istep1=0
istep2=0
dall=0
knumo=12345
knum=0
do
read(97,'(a)',iostat=err) line
if(err.eq.0)then
if(line(1:1).eq.'#')then
read(line,*)str1,sta1_lat,sta1_lon,period,wavetp,veltp
if(wavetp.eq.1.and.veltp.eq.0) knum=period
if(wavetp.eq.1.and.veltp.eq.1) knum=kmaxLc+period
if(knum.ne.knumo)then
istep=0
istep2=istep2+1
endif
istep=istep+1
istep1=0
sta1_lat=(90.0-sta1_lat)*pi/180.0
sta1_lon=sta1_lon*pi/180.0
scxfL(istep,knum)=sta1_lat
sczfL(istep,knum)=sta1_lon
periodsL(istep,knum)=period
wavetypeL(istep,knum)=wavetp
igrtL(istep,knum)=veltp
nsrc1L(knum)=istep
knumo=knum
else
read(line,*) sta2_lat,sta2_lon,velvalue
istep1=istep1+1
dall=dall+1
sta2_lat=(90.0-sta2_lat)*pi/180.0
sta2_lon=sta2_lon*pi/180.0
rcxfL(istep1,istep,knum)=sta2_lat
rczfL(istep1,istep,knum)=sta2_lon
call delsph(sta1_lat,sta1_lon,sta2_lat,sta2_lon,dist1)
distL(dall)=dist1
obstL(dall)=dist1/velvalue
pvallL(dall)=velvalue
nrc1L(istep,knum)=istep1
endif
else
exit
endif
enddo
close(97)
dallL=dall
write(*,'(a,i7)')'# Love wave measurements :', dallL
dall=dallR+dallL
! allocate for inversion
allocate(depz(nz),stat=checkstat)
maxnar=spfra*dall*nx*ny*nz*2
maxvp=(nx-2)*(ny-2)*(nz-1)*2
allocate(dv(maxvp), stat=checkstat)
allocate(norm(maxvp), stat=checkstat)
allocate(vsf(nx,ny,nz), stat=checkstat)
allocate(gam(nx,ny,nz), stat=checkstat)
allocate(vsftrue(nx,ny,nz), stat=checkstat)
allocate(gamtrue(nx,ny,nz), stat=checkstat)
allocate(rwR(maxnar),stat=checkstat)
allocate(rwL(maxnar),stat=checkstat)
allocate(rw(maxnar),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate rw'
endif
allocate(iwR(2*maxnar+1),stat=checkstat)
allocate(iwL(2*maxnar+1),stat=checkstat)
allocate(iw(2*maxnar+1),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate iw'
endif
allocate(colR(maxnar),stat=checkstat)
allocate(colL(maxnar),stat=checkstat)
allocate(col(maxnar),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate col'
endif
allocate(cbst(dall+maxvp),dsyn(dall),datweight(dall),wt(dall+maxvp),&
dtres(dall+maxvp),stat=checkstat)
allocate(dsynR(dallR+maxvp),dsynL(dallL+maxvp),stat=checkstat)
write(*,'(a,i7)')'# Number wave measurements :', dall
! read initial model
open(10,file='MOD.Vsv',status='old')
read(10,*)(depz(i),i=1,nz)
do k=1,nz
do j=1,ny
read(10,*)(vsf(i,j,k),i=1,nx)
enddo
enddo
close(10)
open(20,file='MOD.gam',status='old') ! define gamma=vsh/vsv
read(20,*)(depz(i),i=1,nz)
do k=1,nz
do j=1,ny
read(20,*)(gam(i,j,k),i=1,nx)
enddo
enddo
close(20)
write(*,*)'grid points in depth direction: (km)'
write(*,'(50f8.2)') depz
! checkerboard test
if (ifsyn==1)then
write(*,*)'checkerboard resolution test begin'
vsftrue=vsf
gamtrue=gam
open(11,file='MOD.true.Vsv')
do k=1,nz
do j=1,ny
read(11,*)(vsftrue(i,j,k),i=1,nx)
enddo
enddo
close(11)
open(22,file='MOD.true.gam')
do k=1,nz
do j=1,ny
read(22,*)(gamtrue(i,j,k),i=1,nx)
enddo
enddo
close(22)
! forward simulation
call synRadAni(nx,ny,nz,maxvp,&
vsftrue,gamtrue,obstR, obstL, &
goxd,gozd,dvxd,dvzd, &
kmaxRc, kmaxRg, kmaxLc, kmaxLg, kmaxR, kmaxL, &
tRc, tRg, tLc, tLg, wavetypeR, wavetypeL, &
igrtR, igrtL, periodsR, periodsL, &
depz,minthk, &
scxfR, sczfR, rcxfR, rczfR, &
scxfL, sczfL, rcxfL, rczfL, &
nsrc1R, nsrc1L, nrc1R, nrc1L, &
nsrc, nrc, noiselevel)
endif
! iterate until converge
writepath = 0
do iter=1,maxiter
iwR = 0
rwR = 0
colR = 0
iwL = 0
rwL = 0
colL = 0
! compute sensitivity matrix
if (iter==maxiter) then
writepath = 1
! open(40, file='raypath.out')
endif
write(*,'(a,i4)') '### Iteration :', iter
write(*,*) 'computing sensitivity matrix ...'
call CalRadAniG(nx, ny, nz, maxvp, vsf, gam, &
dsynR, dsynL, &
goxd, gozd, dvxd, dvzd, &
kmaxRc, kmaxRg, kmaxLc, kmaxLg, &
tRc, tRg, tLc, tLg, &
wavetypeR, wavetypeL, &
igrtR, igrtL, periodsR, periodsL, &
depz, minthk, &
scxfR, sczfR, scxfL, sczfL, &
rcxfR, rczfR, rcxfL, rczfL, &
nrc1R, nrc1L, nsrc1R, nsrc1L, &
kmaxR, kmaxL, nsrc, nrc, &
narR, narL, iwR, iwL, rwR, rwL, colR, colL, &
writepath, maxnar)
do i=1,dallR
cbst(i)=obstR(i)-dsynR(i)
enddo
do i=dallR+1,dallR+dallL
cbst(i)=obstL(i-dallR)-dsynL(i-dallR)
enddo
threshold=threshold+(maxiter/2-iter)/3*0.5
do i=1,dall
! compute weight for the data
datweight(i)=1.0
if(abs(cbst(i))>threshold) then
! datweight(i)=exp(-abs(cbst(i)-threshold))
! fortest
datweight(i)=1
! end fortest
endif
cbst(i)=cbst(i)*datweight(i)
enddo
do i=1,narR ! weight the G matrix every row
rwR(i)=rwR(i)*datweight(iwR(1+i))
enddo
do i=1,narL ! weight the G matrix every row
rwL(i)=rwL(i)*datweight(iwL(1+i))
enddo
! assemble (rwR, rwL) --> rw; (iwR, iwL) --> iw; (colR, colL) --> col
! rw, col, iw
iwL(1)=narL
iwR(1)=narR
iw(1)=narR+narL*2
nar=iw(1)
do i=1,iwR(1)
iw(i+1)=iwR(i+1)
col(i)=colR(i)
rw(i)=rwR(i)
enddo
do i=1,iwL(1)
iw(i+iwR(1)+1)=iwL(i+1)+dallR
col(i+iwR(1))=colL(i)
iw(i+iwR(1)+1+iwL(1))=iwL(i+1)+dallR
col(i+iwR(1)+iwL(1))=colL(i)+maxvp/2
ii=mod(mod(colL(i),nvy*nvx),nvx)
if (ii.eq.0) ii=nvx
jj=mod((colL(i)-ii)/nvx,nvy)+1
kk=(colL(i)-ii-(jj-1)*nvx)/nvx/nvy+1
rw(i+iwR(1))=gam(ii+1,jj+1,kk)*rwL(i)
rw(i+iwR(1)+iwL(1))=vsf(ii+1,jj+1,kk)*rwL(i)/coef
enddo
! then add regularization term
weight1=dnrm2(dallR,cbst(1:dallR),1)**2/dallR*lambda1
weight2=dnrm2(dallL,cbst(dallR+1:dallR+dallL),1)**2/dallL*lambda2/coef
! smoothing lambda1
count3=0
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(i==1.or.i==nvx.or.j==1.or.j==nvy.or.k==1.or.k==nvz)then
count3=count3+1
col(nar+1)=(k-1)*nvy*nvx+(j-1)*nvx+i
rw(nar+1)=2.0*weight1
iw(1+nar+1)=dall+count3
cbst(dall+count3)=0.0
nar=nar+1
else
count3=count3+1
col(nar+1)=(k-1)*nvy*nvx+(j-1)*nvx+i
rw(nar+1)=6.0*weight1
iw(1+nar+1)=dall+count3
rw(nar+2)=-1.0*weight1
iw(1+nar+2)=dall+count3
col(nar+2)=(k-1)*nvy*nvx+(j-1)*nvx+i-1
rw(nar+3)=-1.0*weight1
iw(1+nar+3)=dall+count3
col(nar+3)=(k-1)*nvy*nvx+(j-1)*nvx+i+1
rw(nar+4)=-1.0*weight1
iw(1+nar+4)=dall+count3
col(nar+4)=(k-1)*nvy*nvx+(j-2)*nvx+i
rw(nar+5)=-1.0*weight1
iw(1+nar+5)=dall+count3
col(nar+5)=(k-1)*nvy*nvx+j*nvx+i
rw(nar+6)=-1.0*weight1
iw(1+nar+6)=dall+count3
col(nar+6)=(k-2)*nvy*nvx+(j-1)*nvx+i
rw(nar+7)=-1.0*weight1
iw(1+nar+7)=dall+count3
col(nar+7)=k*nvy*nvx+(j-1)*nvx+i
cbst(dall+count3)=0
nar=nar+7
endif
enddo
enddo
enddo
! smoothing lambda2
count4=0
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(i==1.or.i==nvx.or.j==1.or.j==nvy.or.k==1.or.k==nvz)then
count4=count4+1
col(nar+1)=(k-1)*nvy*nvx+(j-1)*nvx+i+maxvp/2
rw(nar+1)=2.0*weight2
iw(1+nar+1)=dall+count4
cbst(dall+count4)=0.0
nar=nar+1
else
count4=count4+1
col(nar+1)=(k-1)*nvy*nvx+(j-1)*nvx+i+maxvp/2
rw(nar+1)=6.0*weight2
iw(1+nar+1)=dall+count4
rw(nar+2)=-1.0*weight2
iw(1+nar+2)=dall+count4
col(nar+2)=(k-1)*nvy*nvx+(j-1)*nvx+i-1+maxvp/2
rw(nar+3)=-1.0*weight2
iw(1+nar+3)=dall+count4
col(nar+3)=(k-1)*nvy*nvx+(j-1)*nvx+i+1+maxvp/2
rw(nar+4)=-1.0*weight2
iw(1+nar+4)=dall+count4
col(nar+4)=(k-1)*nvy*nvx+(j-2)*nvx+i+maxvp/2
rw(nar+5)=-1.0*weight2
iw(1+nar+5)=dall+count4
col(nar+5)=(k-1)*nvy*nvx+j*nvx+i+maxvp/2
rw(nar+6)=-1.0*weight2
iw(1+nar+6)=dall+count4
col(nar+6)=(k-2)*nvy*nvx+(j-1)*nvx+i+maxvp/2
rw(nar+7)=-1.0*weight2
iw(1+nar+7)=dall+count4
col(nar+7)=k*nvy*nvx+(j-1)*nvx+i+maxvp/2
cbst(dall+count4)=0
nar=nar+7
endif
enddo
enddo
enddo
!
m=dall+count3+count4
n=maxvp
iw(1)=nar
do i=1,nar
iw(1+nar+i)=col(i)
enddo
if (nar > maxnar) stop 'increase sparsity fraction (spfra)'
! call LSMR for inversion, we need iw, rw, cbst,
leniw=2*nar+1
lenrw=nar
dv=0
atol=1e-3
btol=1e-3
conlim=1200
itnlim=1000
istop =0
anorm =0.0
acond =0.0
arnorm=0.0
xnorm =0.0
localSize=10
!damp=0.0 ! see explanation of LSMR in lsmrModule.f90
call LSMR(m, n, leniw, lenrw, iw, rw, cbst, damp, &
atol, btol, conlim, itnlim, localSize, nout, &
dv, istop, itn, anorm, acond, rnorm, arnorm, xnorm)
if(istop==3) print*,'istop = 3, large condition number'
do i=1,dall
cbst(i)=cbst(i)/datweight(i)
enddo
! check the update
! and update Vsv and gamma
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(dv((k-1)*nvx*nvy+(j-1)*nvx+i).ge. 0.500) then
dv((k-1)*nvx*nvy+(j-1)*nvx+i)=0.500
endif
if(dv((k-1)*nvx*nvy+(j-1)*nvx+i).le. -0.500) then
dv((k-1)*nvx*nvy+(j-1)*nvx+i)=-0.500
endif
vsf(i+1,j+1,k)=vsf(i+1,j+1,k)+dv((k-1)*nvx*nvy+(j-1)*nvx+i)
if(vsf(i+1,j+1,k).lt.Minvel) vsf(i+1,j+1,k)=Minvel
if(vsf(i+1,j+1,k).gt.Maxvel) vsf(i+1,j+1,k)=Maxvel
enddo
enddo
enddo
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(dv((k-1)*nvx*nvy+(j-1)*nvx+i+maxvp/2).ge. 0.10*coef) then
dv((k-1)*nvx*nvy+(j-1)*nvx+i+maxvp/2)=0.10*coef
endif
if(dv((k-1)*nvx*nvy+(j-1)*nvx+i+maxvp/2).le.-0.10*coef) then
dv((k-1)*nvx*nvy+(j-1)*nvx+i+maxvp/2)=-0.10*coef
endif
gam(i+1,j+1,k)=gam(i+1,j+1,k)+dv((k-1)*nvx*nvy+ &
(j-1)*nvx+i+maxvp/2)/coef
if(gam(i+1,j+1,k).lt.Mingam) gam(i+1,j+1,k)=Mingam
if(gam(i+1,j+1,k).gt.Maxgam) gam(i+1,j+1,k)=Maxgam
enddo
enddo
enddo
! output Vsv and gamma
write(*,*)'output Vsv at iteration', iter
write(outmodel,'(a,a,i3.3)')trim(inputfile),'Measure.dat.iter',iter
open(64,file=outmodel)
do k=1,nvz
do j=1,nvy
do i=1,nvx
write(64,'(6f10.4)')gozd+(j-1)*dvzd, goxd-(i-1)*dvxd, depz(k), vsf(i+1,j+1,k), gam(i+1,j+1,k)
enddo
enddo
enddo
close(64)
! compute the Lm|_2 term (for L curve analysis)
rough1=0.0
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(k.ne.1)then
rough1=rough1+(vsf(i+2,j+1,k)+vsf(i+1,j+2,k)+ &
vsf(i+1,j+1,k+1)+vsf(i,j+1,k)+vsf(i+1,j,k)+ &
vsf(i+1,j+1,k-1)-6.0*vsf(i+1,j+1,k))**2
else
rough1=rough1+(vsf(i+2,j+1,k)+vsf(i+1,j+2,k)+ &
vsf(i+1,j+1,k+1)+vsf(i,j+1,k)+vsf(i+1,j,k)+ &
-5.0*vsf(i+1,j+1,k))**2
endif
enddo
enddo
enddo
rough1=sqrt(rough1)
rough2=0.0
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(k.ne.1)then
rough2=rough2+(gam(i+2,j+1,k)+gam(i+1,j+2,k)+ &
gam(i+1,j+1,k+1)+gam(i,j+1,k)+gam(i+1,j,k)+ &
gam(i+1,j+1,k-1)-6.0*gam(i+1,j+1,k))**2
else
rough2=rough2+(gam(i+2,j+1,k)+gam(i+1,j+2,k)+ &
gam(i+1,j+1,k+1)+gam(i,j+1,k)+gam(i+1,j,k)+ &
-5.0*gam(i+1,j+1,k))**2
endif
enddo
enddo
enddo
rough2=sqrt(rough2)
! output information for each iteration
mean=sum(cbst(1:dall))/dall
std_devs=sqrt(sum(cbst(1:dall)**2)/dall-mean**2)
write(*,'(i2,a)'), iter, 'th iteration ...'
write(*,'(a,2f12.4)'), 'weight1 and weight2 are: ', weight1, weight2
write(*,'(a,f12.4,f12.4,f12.4)'), 'mean, std_devs and rms of &
residual: ', mean*1000, 1000*std_devs, &
dnrm2(dall,cbst,1)/sqrt(real(dall))
write(*,'(a,f12.4,f12.4)'), 'Roughness of the model ', rough1, rough2
! output to IterVel.out
write(34,'(i2,a)'), iter, 'th iteration ...'
write(34,'(a,2f12.4)'), 'weight1 and weight2 are: ', weight1, weight2
write(34,'(a,f12.4,f12.4,f12.4)'), 'mean, std_devs and rms of &
residual: ', mean*1000, 1000*std_devs, &
dnrm2(dall,cbst,1)/sqrt(real(dall))
write(34,'(a,f12.4,f12.4)'), 'Roughness of the model ', rough1, rough2
! output min and max variations
write(*,'(a,2f12.4)'),'min and max velocity variation ',&
minval(dv(1:maxvp/2)),maxval(dv(1:maxvp/2))
write(*,'(a,2f12.4)'),'min and max gamma variation ',&
minval(dv(maxvp/2:maxvp))/coef,maxval(dv(maxvp/2:maxvp))/coef
enddo ! end iteration
! post-inversion
! output the final vsv and gamma
write(*,*),'Program finished successfully'
if(ifsyn==1) then
open(65,file='RAmodel.real')
write(outsyn,'(a,a)')trim(inputfile),'Syn.dat'
open(63,file=outsyn)
do k=1,nvz
do j=1,nvy
do i=1,nvx
write(65,'(6f10.4)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsftrue(i+1,j+1,k), gamtrue(i+1,j+1,k)
write(63,'(6f10.4)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsftrue(i+1,j+1,k), gamtrue(i+1,j+1,k)
enddo
enddo
enddo
close(65)
close(63)
write(*,*),'Output true model RAmodel.real'
write(*,*),'Output inverted model to ', outsyn
else
write(outmodel,'(a,a)')trim(inputfile),'Measure.dat'
open(64,file=outmodel)
do k=1,nvz
do j=1,nvy
do i=1,nvx
write(64,'(6f10.4)') gozd+(j-1)*dvzd, goxd-(i-1)*dvxd,depz(k), vsf(i+1,j+1,k), gam(i+1,j+1,k)
enddo
enddo
enddo
close(64)
endif
close(nout)
close(34)
! deallocate variables
deallocate(scxfR,sczfR, scxfL, sczfL)
deallocate(rcxfR,rczfR, rcxfL, rczfL)
deallocate(periodsR, periodsL)
deallocate(wavetypeR,wavetypeL)
deallocate(nrc1R,nrc1L)
deallocate(nsrc1R,nsrc1L)
deallocate(igrtR,igrtL)
deallocate(obstR,obstL,distR, distL)
deallocate(pvallR, pvallL,depRp)
deallocate(depz)
deallocate(dv,norm,vsf,gam,vsftrue,gamtrue)
deallocate(rwR,iwR,colR,cbst,dsynR,datweight,wt,dtres)
deallocate(rwL,iwL,colL,dsynL)
if(kmaxRc.gt.0) then
deallocate(tRc)
endif
if(kmaxRg.gt.0) then
deallocate(tRg)
endif
if(kmaxLc.gt.0) then
deallocate(tLc)
endif
if(kmaxLg.gt.0) then
deallocate(tLg)
endif
end program

790
src/main.f90.backup Normal file
View File

@ -0,0 +1,790 @@
program DRadiSurfTomo
use lsmrModule, only:lsmr
use lsmrblasInterface, only: dnrm2
implicit none
! define variable
! file
character inputfile*80
character logfile*100
character outmodel*100
character outsyn*100
logical ex ! if file exsit
character dummy*40
character datafileR*80
character datafileL*80
! model
integer nx,ny,nz ! dimension of model
real goxd, gozd
real dvxd, dvzd
real, dimension(:), allocatable:: depz
! data
integer nsrc, nrc
integer kmax, kmaxRc, kmaxRg, kmaxLc, kmaxLg ! num of periods
real*8,dimension(:), allocatable:: tRc, tRg, tLc, tLg ! periods
! inversion
real lambda1, lambda2 ! damp for different parameters, see note
real weight1, weight2
integer itn ! iteration for large matrix inversion
integer iter, maxiter ! iteration number
real minthk
integer nout
real sta1_lat, sta1_lon, sta2_lat, sta2_lon
integer dall, dallR, dallL
real,parameter:: pi=3.1415926535898
integer checkstat
real,dimension(:),allocatable:: dsyn, cbst, wt, dtres, datweight
real,dimension(:),allocatable:: dsynR, dsynL
real,dimension(:),allocatable:: distR, distL, obstR, obstL
real,dimension(:),allocatable:: pvallR, pvallL, depRp, pvRp
real, dimension (:,:), allocatable :: scxfR,sczfR, scxfL, sczfL
real, dimension (:,:,:), allocatable :: rcxfR,rczfR, rcxfL, rczfL
integer,dimension(:,:),allocatable::wavetypeR,igrtR,nrc1R
integer,dimension(:,:),allocatable::wavetypeL,igrtL,nrc1L
integer,dimension(:),allocatable::nsrc1R, nsrc1L
integer,dimension(:,:),allocatable::periodsR, periodsL
real,dimension(:),allocatable::rwR, rwL, rw
integer,dimension(:),allocatable::iwR, iwL,colR, colL, iw, col
real,dimension(:),allocatable::dv,norm
real,dimension(:,:,:),allocatable::vsf, gam
real,dimension(:,:,:),allocatable::vsftrue, gamtrue
integer veltp, wavetp
integer ifsyn
real noiselevel
real spfra
real Minvel, Maxvel, Mingam, Maxgam
real threshold0, threshold
integer maxnar, maxvp
integer writepath
integer narR, narL, nar
integer lenrw,leniw
real atol,btol
real conlim
integer istop
integer itnlim, localSize
real acond, anorm, xnorm
real damp, rnorm, arnorm
real mean,std_devs
integer m,n
! auxillary variable
integer ii, jj, kk
integer i, j, k
real velvalue
integer knum, knumo, err
integer istep, istep1, istep2
integer period
character line*200
character str1
real dist1
integer kmaxR, kmaxL
integer nvx, nvy, nvz
integer count3, count4
real, parameter::coef=8.0
real rough1, rough2
! open files
open(34,file='IterVel.out')
nout=36
open(nout,file='lsmr.txt')
! output some information
write(*,*)
write(*,*),' DRadiSurfTomo'
write(*,*)
! read input file
if (iargc()<1) then
write(*,*) 'input file [DRadiSurfTomo.in(default)]'
read(*,'(a)') inputfile
if (len_trim(inputfile)<=1) then
inputfile='DRadiSurfTomo.in'
else
inputfile=inputfile(1:len_trim(inputfile))
endif
else
call getarg(1,inputfile)
endif
inquire(file=inputfile,exist=ex)
if(.not. ex) stop 'unable to open the inputfile (*.in)'
open(10,file=inputfile,status='old')
read(10,'(a30)')dummy
read(10,'(a30)')dummy
read(10,'(a30)')dummy
read(10,*)datafileR
read(10,*)datafileL
read(10,*)nx, ny, nz
read(10,*)goxd,gozd
read(10,*)dvxd,dvzd
read(10,*)nsrc
read(10,*)lambda1, lambda2, damp
read(10,*)minthk
read(10,*)Minvel, Maxvel
read(10,*)Mingam, Maxgam
read(10,*)maxiter
read(10,*)spfra
read(10,*)kmaxRc
if(kmaxRc.gt.0) then
allocate(tRc(kmaxRc),stat=checkstat)
if (checkstat > 0) stop 'error allocating tRc'
read(10,*)(tRc(i),i=1,kmaxRc)
write(*,*) 'Rayleigh wave phase velocity used, periods:(s)'
write(*,'(50f6.2)')(tRc(i),i=1,kmaxRc)
endif
read(10,*)kmaxRg
if(kmaxRg.gt.0) then
allocate(tRg(kmaxRg),stat=checkstat)
if (checkstat > 0) stop 'error allocating tRg'
read(10,*)(tRg(i),i=1,kmaxRg)
write(*,*) 'Rayleigh wave group velocity used, periods:(s)'
write(*,'(50f6.2)')(tRg(i),i=1,kmaxRg)
endif
read(10,*)kmaxLc
if(kmaxLc.gt.0) then
allocate(tLc(kmaxLc),stat=checkstat)
if (checkstat > 0) stop 'error allocating tLc'
read(10,*)(tLc(i),i=1,kmaxLc)
write(*,*) 'Love wave phase velocity used, periods:(s)'
write(*,'(50f6.2)')(tLc(i),i=1,kmaxLc)
endif
read(10,*)kmaxLg
if(kmaxLg.gt.0) then
allocate(tLg(kmaxLg),stat=checkstat)
if (checkstat > 0) stop 'error allocating tLg'
read(10,*)(tLg(i),i=1,kmaxLg)
write(*,*) 'Love wave group velocity used, periods:(s)'
write(*,'(50f6.2)')(tLg(i),i=1,kmaxLg)
endif
read(10,*)ifsyn
read(10,*)noiselevel
read(10,*)threshold0
close(10)
nvx=nx-2;
nvy=ny-2;
nvz=nz-1;
nrc=nsrc
kmax=kmaxRc+kmaxRg+kmaxLc+kmaxLg
kmaxR=kmaxRc+kmaxRg
kmaxL=kmaxLc+kmaxLg
! read measurements
open(unit=87,file=datafileR,status='old')
allocate(scxfR(nsrc,kmaxR),sczfR(nsrc,kmaxR), stat=checkstat)
allocate(scxfL(nsrc,kmaxL),sczfL(nsrc,kmaxL), stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate scxf and sczf'
endif
allocate(rcxfR(nrc,nsrc,kmaxR),rczfR(nrc,nsrc,kmaxR),stat=checkstat)
allocate(rcxfL(nrc,nsrc,kmaxL),rczfL(nrc,nsrc,kmaxL),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate rcxf and rczf'
endif
allocate(periodsR(nsrc,kmaxR),wavetypeR(nsrc,kmaxR),&
nrc1R(nsrc,kmaxR),nsrc1R(kmaxR),&
igrtR(nsrc,kmaxR),stat=checkstat)
allocate(periodsL(nsrc,kmaxL),wavetypeL(nsrc,kmaxL),&
nrc1L(nsrc,kmaxL),nsrc1L(kmaxL),&
igrtL(nsrc,kmaxL),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate periods, wavetype nrc1, nsrc1, igrt'
endif
allocate(obstR(nrc*nsrc*kmaxR),distR(nrc*nsrc*kmaxR),&
stat=checkstat)
allocate(obstL(nrc*nsrc*kmaxL),distL(nrc*nsrc*kmaxL),&
stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate obst, dist '
endif
allocate(pvallR(nrc*nsrc*kmaxR),depRp(nrc*nsrc*kmax),&
pvallL(nrc*nsrc*kmaxL), &
pvRp(nrc*nsrc*kmax),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate pvall, depRp, pvRp'
endif
! read Rayleigh wave
istep=0
istep1=0
istep2=0
dall=0
knumo=12345
knum=0
do
read(87,'(a)',iostat=err) line
if(err.eq.0)then
if(line(1:1).eq.'#')then
read(line,*)str1,sta1_lat,sta1_lon,period,wavetp,veltp
if(wavetp.eq.2.and.veltp.eq.0) knum=period
if(wavetp.eq.2.and.veltp.eq.1) knum=kmaxRc+period
if(knum.ne.knumo)then
istep=0
istep2=istep2+1
endif
istep=istep+1
istep1=0
sta1_lat=(90.0-sta1_lat)*pi/180.0
sta1_lon=sta1_lon*pi/180.0
scxfR(istep,knum)=sta1_lat
sczfR(istep,knum)=sta1_lon
periodsR(istep,knum)=period
wavetypeR(istep,knum)=wavetp
igrtR(istep,knum)=veltp
nsrc1R(knum)=istep
knumo=knum
else
read(line,*) sta2_lat,sta2_lon,velvalue
istep1=istep1+1
dall=dall+1
sta2_lat=(90.0-sta2_lat)*pi/180.0
sta2_lon=sta2_lon*pi/180.0
rcxfR(istep1,istep,knum)=sta2_lat
rczfR(istep1,istep,knum)=sta2_lon
call delsph(sta1_lat,sta1_lon,sta2_lat,sta2_lon,dist1)
distR(dall)=dist1
obstR(dall)=dist1/velvalue
pvallR(dall)=velvalue
nrc1R(istep,knum)=istep1
endif
else
exit
endif
enddo
close(87)
dallR=dall
write(*,'(a,i7)')'# Rayleigh wave measurements:', dallR
! read Love wave
open(unit=97,file=datafileL,status='old')
istep=0
istep1=0
istep2=0
dall=0
knumo=12345
knum=0
do
read(97,'(a)',iostat=err) line
if(err.eq.0)then
if(line(1:1).eq.'#')then
read(line,*)str1,sta1_lat,sta1_lon,period,wavetp,veltp
if(wavetp.eq.1.and.veltp.eq.0) knum=period
if(wavetp.eq.1.and.veltp.eq.1) knum=kmaxLc+period
if(knum.ne.knumo)then
istep=0
istep2=istep2+1
endif
istep=istep+1
istep1=0
sta1_lat=(90.0-sta1_lat)*pi/180.0
sta1_lon=sta1_lon*pi/180.0
scxfL(istep,knum)=sta1_lat
sczfL(istep,knum)=sta1_lon
periodsL(istep,knum)=period
wavetypeL(istep,knum)=wavetp
igrtL(istep,knum)=veltp
nsrc1L(knum)=istep
knumo=knum
else
read(line,*) sta2_lat,sta2_lon,velvalue
istep1=istep1+1
dall=dall+1
sta2_lat=(90.0-sta2_lat)*pi/180.0
sta2_lon=sta2_lon*pi/180.0
rcxfL(istep1,istep,knum)=sta2_lat
rczfL(istep1,istep,knum)=sta2_lon
call delsph(sta1_lat,sta1_lon,sta2_lat,sta2_lon,dist1)
distL(dall)=dist1
obstL(dall)=dist1/velvalue
pvallL(dall)=velvalue
nrc1L(istep,knum)=istep1
endif
else
exit
endif
enddo
close(97)
dallL=dall
write(*,'(a,i7)')'# Love wave measurements :', dallL
dall=dallR+dallL
! allocate for inversion
allocate(depz(nz),stat=checkstat)
maxnar=spfra*dall*nx*ny*nz*2
maxvp=(nx-2)*(ny-2)*(nz-1)*2
allocate(dv(maxvp), stat=checkstat)
allocate(norm(maxvp), stat=checkstat)
allocate(vsf(nx,ny,nz), stat=checkstat)
allocate(gam(nx,ny,nz), stat=checkstat)
allocate(vsftrue(nx,ny,nz), stat=checkstat)
allocate(gamtrue(nx,ny,nz), stat=checkstat)
allocate(rwR(maxnar),stat=checkstat)
allocate(rwL(maxnar),stat=checkstat)
allocate(rw(maxnar),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate rw'
endif
allocate(iwR(2*maxnar+1),stat=checkstat)
allocate(iwL(2*maxnar+1),stat=checkstat)
allocate(iw(2*maxnar+1),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate iw'
endif
allocate(colR(maxnar),stat=checkstat)
allocate(colL(maxnar),stat=checkstat)
allocate(col(maxnar),stat=checkstat)
if(checkstat>0)then
write(*,*)'error allocate col'
endif
allocate(cbst(dall+maxvp),dsyn(dall),datweight(dall),wt(dall+maxvp),&
dtres(dall+maxvp),stat=checkstat)
allocate(dsynR(dallR+maxvp),dsynL(dallL+maxvp),stat=checkstat)
write(*,'(a,i7)')'# Number wave measurements :', dall
! read initial model
open(10,file='MOD.Vsv',status='old')
read(10,*)(depz(i),i=1,nz)
do k=1,nz
do j=1,ny
read(10,*)(vsf(i,j,k),i=1,nx)
enddo
enddo
close(10)
open(20,file='MOD.gam',status='old') ! define gamma=vsh/vsv
read(20,*)(depz(i),i=1,nz)
do k=1,nz
do j=1,ny
read(20,*)(gam(i,j,k),i=1,nx)
enddo
enddo
close(20)
write(*,*)'grid points in depth direction: (km)'
write(*,'(50f8.2)') depz
! checkerboard test
if (ifsyn==1)then
write(*,*)'checkerboard resolution test begin'
vsftrue=vsf
gamtrue=gam
open(11,file='MOD.true.Vsv')
do k=1,nz
do j=1,ny
read(11,*)(vsftrue(i,j,k),i=1,nx)
enddo
enddo
close(11)
open(22,file='MOD.true.gam')
do k=1,nz
do j=1,ny
read(22,*)(gamtrue(i,j,k),i=1,nx)
enddo
enddo
close(22)
! forward simulation
call synRadAni(nx,ny,nz,maxvp,&
vsftrue,gamtrue,obstR, obstL, &
goxd,gozd,dvxd,dvzd, &
kmaxRc, kmaxRg, kmaxLc, kmaxLg, kmaxR, kmaxL, &
tRc, tRg, tLc, tLg, wavetypeR, wavetypeL, &
igrtR, igrtL, periodsR, periodsL, &
depz,minthk, &
scxfR, sczfR, rcxfR, rczfR, &
scxfL, sczfL, rcxfL, rczfL, &
nsrc1R, nsrc1L, nrc1R, nrc1L, &
nsrc, nrc, noiselevel)
endif
! iterate until converge
writepath = 0
do iter=1,maxiter
iwR = 0
rwR = 0
colR = 0
iwL = 0
rwL = 0
colL = 0
! compute sensitivity matrix
if (iter==maxiter) then
writepath = 1
! open(40, file='raypath.out')
endif
write(*,'(a,i4)') '### Iteration :', iter
write(*,*) 'computing sensitivity matrix ...'
call CalRadAniG(nx, ny, nz, maxvp, vsf, gam, &
dsynR, dsynL, &
goxd, gozd, dvxd, dvzd, &
kmaxRc, kmaxRg, kmaxLc, kmaxLg, &
tRc, tRg, tLc, tLg, &
wavetypeR, wavetypeL, &
igrtR, igrtL, periodsR, periodsL, &
depz, minthk, &
scxfR, sczfR, scxfL, sczfL, &
rcxfR, rczfR, rcxfL, rczfL, &
nrc1R, nrc1L, nsrc1R, nsrc1L, &
kmaxR, kmaxL, nsrc, nrc, &
narR, narL, iwR, iwL, rwR, rwL, colR, colL, &
writepath, maxnar)
do i=1,dallR
cbst(i)=obstR(i)-dsynR(i)
enddo
do i=dallR+1,dallR+dallL
cbst(i)=obstL(i-dallR)-dsynL(i-dallR)
enddo
threshold=threshold+(maxiter/2-iter)/3*0.5
do i=1,dall
! compute weight for the data
datweight(i)=1.0
if(abs(cbst(i))>threshold) then
! datweight(i)=exp(-abs(cbst(i)-threshold))
! fortest
datweight(i)=1
! end fortest
endif
cbst(i)=cbst(i)*datweight(i)
enddo
do i=1,narR ! weight the G matrix every row
rwR(i)=rwR(i)*datweight(iwR(1+i))
enddo
do i=1,narL ! weight the G matrix every row
rwL(i)=rwL(i)*datweight(iwL(1+i))
enddo
! assemble (rwR, rwL) --> rw; (iwR, iwL) --> iw; (colR, colL) --> col
! rw, col, iw
iwL(1)=narL
iwR(1)=narR
iw(1)=narR+narL*2
nar=iw(1)
do i=1,iwR(1)
iw(i+1)=iwR(i+1)
col(i)=colR(i)
rw(i)=rwR(i)
enddo
do i=1,iwL(1)
iw(i+iwR(1)+1)=iwL(i+1)+dallR
col(i+iwR(1))=colL(i)
iw(i+iwR(1)+1+iwL(1))=iwL(i+1)+dallR
col(i+iwR(1)+iwL(1))=colL(i)+maxvp/2
ii=mod(mod(colL(i),nvy*nvx),nvx)
if (ii.eq.0) ii=nvx
jj=mod((colL(i)-ii)/nvx,nvy)+1
kk=(colL(i)-ii-(jj-1)*nvx)/nvx/nvy+1
rw(i+iwR(1))=gam(ii+1,jj+1,kk)*rwL(i)
rw(i+iwR(1)+iwL(1))=vsf(ii+1,jj+1,kk)*rwL(i)/coef
enddo
! then add regularization term
weight1=dnrm2(dallR,cbst(1:dallR),1)**2/dallR*lambda1
weight2=dnrm2(dallL,cbst(dallR+1:dallR+dallL),1)**2/dallL*lambda2/coef
! smoothing lambda1
count3=0
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(i==1.or.i==nvx.or.j==1.or.j==nvy.or.k==1.or.k==nvz)then
count3=count3+1
col(nar+1)=(k-1)*nvy*nvx+(j-1)*nvx+i
rw(nar+1)=2.0*weight1
iw(1+nar+1)=dall+count3
cbst(dall+count3)=0.0
nar=nar+1
else
count3=count3+1
col(nar+1)=(k-1)*nvy*nvx+(j-1)*nvx+i
rw(nar+1)=6.0*weight1
iw(1+nar+1)=dall+count3
rw(nar+2)=-1.0*weight1
iw(1+nar+2)=dall+count3
col(nar+2)=(k-1)*nvy*nvx+(j-1)*nvx+i-1
rw(nar+3)=-1.0*weight1
iw(1+nar+3)=dall+count3
col(nar+3)=(k-1)*nvy*nvx+(j-1)*nvx+i+1
rw(nar+4)=-1.0*weight1
iw(1+nar+4)=dall+count3
col(nar+4)=(k-1)*nvy*nvx+(j-2)*nvx+i
rw(nar+5)=-1.0*weight1
iw(1+nar+5)=dall+count3
col(nar+5)=(k-1)*nvy*nvx+j*nvx+i
rw(nar+6)=-1.0*weight1
iw(1+nar+6)=dall+count3
col(nar+6)=(k-2)*nvy*nvx+(j-1)*nvx+i
rw(nar+7)=-1.0*weight1
iw(1+nar+7)=dall+count3
col(nar+7)=k*nvy*nvx+(j-1)*nvx+i
cbst(dall+count3)=0
nar=nar+7
endif
enddo
enddo
enddo
! smoothing lambda2
count4=0
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(i==1.or.i==nvx.or.j==1.or.j==nvy.or.k==1.or.k==nvz)then
count4=count4+1
col(nar+1)=(k-1)*nvy*nvx+(j-1)*nvx+i+maxvp/2
rw(nar+1)=2.0*weight2
iw(1+nar+1)=dall+count4
cbst(dall+count4)=0.0
nar=nar+1
else
count4=count4+1
col(nar+1)=(k-1)*nvy*nvx+(j-1)*nvx+i+maxvp/2
rw(nar+1)=6.0*weight2
iw(1+nar+1)=dall+count4
rw(nar+2)=-1.0*weight2
iw(1+nar+2)=dall+count4
col(nar+2)=(k-1)*nvy*nvx+(j-1)*nvx+i-1+maxvp/2
rw(nar+3)=-1.0*weight2
iw(1+nar+3)=dall+count4
col(nar+3)=(k-1)*nvy*nvx+(j-1)*nvx+i+1+maxvp/2
rw(nar+4)=-1.0*weight2
iw(1+nar+4)=dall+count4
col(nar+4)=(k-1)*nvy*nvx+(j-2)*nvx+i+maxvp/2
rw(nar+5)=-1.0*weight2
iw(1+nar+5)=dall+count4
col(nar+5)=(k-1)*nvy*nvx+j*nvx+i+maxvp/2
rw(nar+6)=-1.0*weight2
iw(1+nar+6)=dall+count4
col(nar+6)=(k-2)*nvy*nvx+(j-1)*nvx+i+maxvp/2
rw(nar+7)=-1.0*weight2
iw(1+nar+7)=dall+count4
col(nar+7)=k*nvy*nvx+(j-1)*nvx+i+maxvp/2
cbst(dall+count4)=0
nar=nar+7
endif
enddo
enddo
enddo
!
m=dall+count3+count4
n=maxvp
iw(1)=nar
do i=1,nar
iw(1+nar+i)=col(i)
enddo
if (nar > maxnar) stop 'increase sparsity fraction (spfra)'
! call LSMR for inversion, we need iw, rw, cbst,
leniw=2*nar+1
lenrw=nar
dv=0
atol=1e-3
btol=1e-3
conlim=1200
itnlim=1000
istop =0
anorm =0.0
acond =0.0
arnorm=0.0
xnorm =0.0
localSize=10
!damp=0.0 ! see explanation of LSMR in lsmrModule.f90
call LSMR(m, n, leniw, lenrw, iw, rw, cbst, damp, &
atol, btol, conlim, itnlim, localSize, nout, &
dv, istop, itn, anorm, acond, rnorm, arnorm, xnorm)
if(istop==3) print*,'istop = 3, large condition number'
do i=1,dall
cbst(i)=cbst(i)/datweight(i)
enddo
! check the update
! and update Vsv and gamma
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(dv((k-1)*nvx*nvy+(j-1)*nvx+i).ge. 0.500) then
dv((k-1)*nvx*nvy+(j-1)*nvx+i)=0.500
endif
if(dv((k-1)*nvx*nvy+(j-1)*nvx+i).le. -0.500) then
dv((k-1)*nvx*nvy+(j-1)*nvx+i)=-0.500
endif
vsf(i+1,j+1,k)=vsf(i+1,j+1,k)+dv((k-1)*nvx*nvy+(j-1)*nvx+i)
if(vsf(i+1,j+1,k).lt.Minvel) vsf(i+1,j+1,k)=Minvel
if(vsf(i+1,j+1,k).gt.Maxvel) vsf(i+1,j+1,k)=Maxvel
enddo
enddo
enddo
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(dv((k-1)*nvx*nvy+(j-1)*nvx+i+maxvp/2).ge. 0.10*coef) then
dv((k-1)*nvx*nvy+(j-1)*nvx+i+maxvp/2)=0.10*coef
endif
if(dv((k-1)*nvx*nvy+(j-1)*nvx+i+maxvp/2).le.-0.10*coef) then
dv((k-1)*nvx*nvy+(j-1)*nvx+i+maxvp/2)=-0.10*coef
endif
gam(i+1,j+1,k)=gam(i+1,j+1,k)+dv((k-1)*nvx*nvy+ &
(j-1)*nvx+i+maxvp/2)/coef
if(gam(i+1,j+1,k).lt.Mingam) gam(i+1,j+1,k)=Mingam
if(gam(i+1,j+1,k).gt.Maxgam) gam(i+1,j+1,k)=Maxgam
enddo
enddo
enddo
! output Vsv and gamma
write(*,*)'output Vsv at iteration', iter
write(outmodel,'(a,a,i3.3)')trim(inputfile),'Measure.dat.iter',iter
open(64,file=outmodel)
do k=1,nvz
do j=1,nvy
do i=1,nvx
write(64,'(6f10.4)')gozd+(j-1)*dvzd, goxd-(i-1)*dvxd, depz(k), vsf(i+1,j+1,k), gam(i+1,j+1,k)
enddo
enddo
enddo
close(64)
! compute the Lm|_2 term (for L curve analysis)
rough1=0.0
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(k.ne.1)then
rough1=rough1+(vsf(i+2,j+1,k)+vsf(i+1,j+2,k)+ &
vsf(i+1,j+1,k+1)+vsf(i,j+1,k)+vsf(i+1,j,k)+ &
vsf(i+1,j+1,k-1)-6.0*vsf(i+1,j+1,k))**2
else
rough1=rough1+(vsf(i+2,j+1,k)+vsf(i+1,j+2,k)+ &
vsf(i+1,j+1,k+1)+vsf(i,j+1,k)+vsf(i+1,j,k)+ &
-5.0*vsf(i+1,j+1,k))**2
endif
enddo
enddo
enddo
rough1=sqrt(rough1)
rough2=0.0
do k=1,nvz
do j=1,nvy
do i=1,nvx
if(k.ne.1)then
rough2=rough2+(gam(i+2,j+1,k)+gam(i+1,j+2,k)+ &
gam(i+1,j+1,k+1)+gam(i,j+1,k)+gam(i+1,j,k)+ &
gam(i+1,j+1,k-1)-6.0*gam(i+1,j+1,k))**2
else
rough2=rough2+(gam(i+2,j+1,k)+gam(i+1,j+2,k)+ &
gam(i+1,j+1,k+1)+gam(i,j+1,k)+gam(i+1,j,k)+ &
-5.0*gam(i+1,j+1,k))**2
endif
enddo
enddo
enddo
rough2=sqrt(rough2)
! output information for each iteration
mean=sum(cbst(1:dall))/dall
std_devs=sqrt(sum(cbst(1:dall)**2)/dall-mean**2)
write(*,'(i2,a)'), iter, 'th iteration ...'
write(*,'(a,2f12.4)'), 'weight1 and weight2 are: ', weight1, weight2
write(*,'(a,f12.4,f12.4,f12.4)'), 'mean, std_devs and rms of &
residual: ', mean*1000, 1000*std_devs, &
dnrm2(dall,cbst,1)/sqrt(real(dall))
write(*,'(a,f12.4,f12.4)'), 'Roughness of the model ', rough1, rough2
! output to IterVel.out
write(34,'(i2,a)'), iter, 'th iteration ...'
write(34,'(a,2f12.4)'), 'weight1 and weight2 are: ', weight1, weight2
write(34,'(a,f12.4,f12.4,f12.4)'), 'mean, std_devs and rms of &
residual: ', mean*1000, 1000*std_devs, &
dnrm2(dall,cbst,1)/sqrt(real(dall))
write(34,'(a,f12.4,f12.4)'), 'Roughness of the model ', rough1, rough2
! output min and max variations
write(*,'(a,2f12.4)'),'min and max velocity variation ',&
minval(dv(1:maxvp/2)),maxval(dv(1:maxvp/2))
write(*,'(a,2f12.4)'),'min and max gamma variation ',&
minval(dv(maxvp/2:maxvp))/coef,maxval(dv(maxvp/2:maxvp))/coef
enddo ! end iteration
! post-inversion
! output the final vsv and gamma
write(*,*),'Program finished successfully'
if(ifsyn==1) then
open(65,file='RAmodel.real')
write(outsyn,'(a,a)')trim(inputfile),'Syn.dat'
open(63,file=outsyn)
do k=1,nvz
do j=1,nvy
do i=1,nvx
write(65,'(6f10.4)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsftrue(i+1,j+1,k), gamtrue(i+1,j+1,k)
write(63,'(6f10.4)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsftrue(i+1,j+1,k), gamtrue(i+1,j+1,k)
enddo
enddo
enddo
close(65)
close(63)
write(*,*),'Output true model RAmodel.real'
write(*,*),'Output inverted model to ', outsyn
else
write(outmodel,'(a,a)')trim(inputfile),'Measure.dat'
open(64,file=outmodel)
do k=1,nvz
do j=1,nvy
do i=1,nvx
write(64,'(6f10.4)') gozd+(j-1)*dvzd, goxd-(i-1)*dvxd,depz(k), vsf(i+1,j+1,k), gam(i+1,j+1,k)
enddo
enddo
enddo
close(64)
endif
close(nout)
close(34)
! deallocate variables
deallocate(scxfR,sczfR, scxfL, sczfL)
deallocate(rcxfR,rczfR, rcxfL, rczfL)
deallocate(periodsR, periodsL)
deallocate(wavetypeR,wavetypeL)
deallocate(nrc1R,nrc1L)
deallocate(nsrc1R,nsrc1L)
deallocate(igrtR,igrtL)
deallocate(obstR,obstL,distR, distL)
deallocate(pvallR, pvallL,depRp)
!deallocate(pvRp)
deallocate(depz)
deallocate(dv,norm,vsf,gam,vsftrue,gamtrue)
deallocate(rwR,iwR,colR,cbst,dsynR,datweight,wt,dtres)
deallocate(rwL,iwL,colL,dsynL)
if(kmaxRc.gt.0) then
deallocate(tRc)
endif
if(kmaxRg.gt.0) then
deallocate(tRg)
endif
if(kmaxLc.gt.0) then
deallocate(tLc)
endif
if(kmaxLg.gt.0) then
deallocate(tLg)
endif
end program

1062
src/surfdisp96.f Normal file

File diff suppressed because it is too large Load Diff

72
src/synRadAni.f90 Normal file
View File

@ -0,0 +1,72 @@
subroutine synRadAni( nx, ny, nz, maxvp,&
vsftrue, gamtrue, obstR, obstL,&
goxd,gozd,dvxd,dvzd, &
kmaxRc,kmaxRg,kmaxLc,kmaxLg,kmaxR, kmaxL,&
tRc,tRg,tLc,tLg,wavetypeR, wavetypeL, &
igrtR, igrtL, periodsR ,periodsL, &
depz,minthk,&
scxfR,sczfR,rcxfR,rczfR, &
scxfL,sczfL,rcxfL,rczfL, &
nsrc1R, nsrc1L,nrc1R, nrc1L, &
nsrc,nrc,noiselevel )
implicit none
integer nx, ny, nz, maxvp, kmaxRc, kmaxRg, kmaxLc, kmaxLg
integer kmaxR, kmaxL
real vsftrue(nx,ny,nz), gamtrue(nx,ny,nz)
real obstR(*), obstL(*)
real goxd, gozd, dvxd, dvzd
real*8 tRc(*), tRg(*), tLc(*), tLg(*)
integer wavetypeR(nsrc,kmaxR), wavetypeL(nsrc,kmaxL)
integer igrtR(nsrc,kmaxR), igrtL(nsrc,kmaxL)
integer periodsR(nsrc,kmaxR), periodsL(nsrc,kmaxL)
real depz(nz)
real minthk
real scxfR(nsrc,kmaxR), sczfR(nsrc,kmaxR)
real scxfL(nsrc,kmaxL), sczfL(nsrc,kmaxL)
real rcxfR(nrc, nsrc, kmaxR), rczfR(nrc, nsrc, kmaxR)
real rcxfL(nrc, nsrc, kmaxL), rczfL(nrc, nsrc, kmaxL)
real noiselevel
integer nrc1R(nsrc,kmaxR), nsrc1R(kmaxR)
integer nrc1L(nsrc,kmaxL), nsrc1L(kmaxL)
integer nsrc, nrc
! auxillary variable
integer i, j, k
real,dimension(:,:,:),allocatable::vsv, vsh
integer checkstat
real*8,dimension(:),allocatable:: dum
integer mmaxvp
allocate(vsv(nx,ny,nz), vsh(nx,ny,nz),stat=checkstat)
! obtain vsv, vsh
do i=1,nx
do j=1,ny
do k=1,nz
vsv(i,j,k)=vsftrue(i,j,k)
vsh(i,j,k)=vsftrue(i,j,k)*gamtrue(i,j,k)
enddo
enddo
enddo
mmaxvp=maxvp/2
call synthetic(nx,ny,nz,mmaxvp,vsv,obstR,&
goxd,gozd,dvxd,dvzd,kmaxRc,kmaxRg,0,0,&
tRc,tRg,dum,dum,wavetypeR,igrtR,periodsR,depz,minthk,&
scxfR,sczfR,rcxfR,rczfR,nrc1R,nsrc1R,kmaxR,&
nsrc,nrc,noiselevel)
call synthetic(nx,ny,nz,mmaxvp,vsh,obstL,&
goxd,gozd,dvxd,dvzd,0,0,kmaxLc,kmaxLg,&
dum,dum,tLc,tLg,wavetypeL,igrtL,periodsL,depz,minthk,&
scxfL,sczfL,rcxfL,rczfL,nrc1L,nsrc1L,kmaxL,&
nsrc,nrc,noiselevel)
! deallocate variables
deallocate(vsv,vsh)
end subroutine

BIN
utils/.DS_Store vendored Normal file

Binary file not shown.

View File

@ -0,0 +1,70 @@
% generate true and initial models for checkerboard test
depth=[0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 120.0];
nLat=12;
nLon=19;
grid=2;
anorm=0.06;
gam=1.0;
anormP=(2+anorm)/(2-anorm);
anormN=(2-anorm)/(2+anorm);
% second horizontal interpolation
gamTrue= zeros(nLat,nLon,length(depth));
for idepth=1:length(depth)
gamTrue(:,:,idepth)=gam;
end
perb=zeros(nLat,nLon);
[iy,ix]=meshgrid(round([1:nLat]/grid),round([1:nLon]/grid));
perb=(-1).^round((ix+iy));
for i=1:nLon
for j=1:nLat
if perb(i,j)>0
perb(i,j)=anormP;
else
perb(i,j)=anormN;
end
end
end
for idepth=1:length(depth)
gamTrue(:,:,idepth)=perb';
end
% output MOD.true.gam
MODtrue=fopen('MOD.true.gam','w');
for iz=1:length(depth)
for iy=1:nLon
for ix=1:nLat
fprintf(MODtrue,'%8.4f',gamTrue(ix,iy,iz));
end
fprintf(MODtrue,'\n');
end
end
fclose(MODtrue);
% output MOD.gam
MODinit=fopen('MOD.gam','w');
for i=1:length(depth)
fprintf(MODinit,'%6.1f',depth(i));
end
fprintf(MODinit,'\n');
for iz=1:length(depth)
for iy=1:nLon
for ix=1:nLat
fprintf(MODinit,'%8.3f',gam);
end
fprintf(MODinit,'\n');
end
end
fclose(MODinit);

View File

@ -0,0 +1,60 @@
% generate true Vsv model and initial model for checkerboard test
depth=[0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 120.0];
nLat=12;
nLon=19;
grid=2;
anorm=-0.04;
%vel=4.0;
% second horizontal interpolation
mod1d=load('mod.1d');
velTrue= zeros(nLat,nLon,length(depth));
for idepth=1:length(depth)
velTrue(:,:,idepth)=mod1d(idepth);
end
perb=zeros(nLat,nLon);
[iy,ix]=meshgrid(round([1:nLat]/grid),round([1:nLon]/grid));
perb=(-1).^round((ix+iy));
for idepth=1:length(depth)
VelTrue(:,:,idepth)=velTrue(:,:,idepth)+perb'*anorm*mod1d(idepth);
end
% output MOD.true.Vsv
MODtrue=fopen('MOD.true.Vsv','w');
for iz=1:length(depth)
for iy=1:nLon
for ix=1:nLat
fprintf(MODtrue,'%8.3f',VelTrue(ix,iy,iz));
end
fprintf(MODtrue,'\n');
end
end
fclose(MODtrue);
% output MOD.Vsv
MODinit=fopen('MOD.Vsv','w');
for i=1:length(depth)
fprintf(MODinit,'%6.1f',depth(i));
end
fprintf(MODinit,'\n');
for iz=1:length(depth)
for iy=1:nLon
for ix=1:nLat
fprintf(MODinit,'%8.3f',mod1d(iz));
end
fprintf(MODinit,'\n');
end
end
fclose(MODinit);

18
utils/checkerboard/mod.1d Normal file
View File

@ -0,0 +1,18 @@
2.393
3.367
3.412
3.411
3.398
3.397
3.416
3.452
3.505
3.581
3.689
3.827
4.019
4.389
4.456
4.470
4.475
4.482

View File

@ -0,0 +1,40 @@
% generate intial model MOD.gam for DRadiSurfTomo
depth=[0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 120.0];
nLat=12;
nLon=19;
% load 1D model
xxx=load('mod.1d');
mod1d=zeros(1,length(xxx));
% second horizontal interpolation
gam= zeros(nLat,nLon,length(depth));
for idepth=1:length(depth)
gam(:,:,idepth)=1;
end
% write to MOD.true file
MOD=fopen('MOD.gam','w');
for i=1:length(depth)
fprintf(MOD,'%6.1f',depth(i));
end
fprintf(MOD,'\n');
for iz=1:length(depth)
for iy=1:nLon
for ix=1:nLat
fprintf(MOD,'%8.4f',gam(ix,iy,iz));
end
fprintf(MOD,'\n');
end
end
fclose(MOD);

View File

@ -0,0 +1,40 @@
% generate intial model MOD.gam for DRadiSurfTomo
depth=[0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 120.0];
nLat=12;
nLon=19;
% load 1D model
xxx=load('mod.1d');
mod1d=xxx;
% second horizontal interpolation
vsv= zeros(nLat,nLon,length(depth));
for idepth=1:length(depth)
vsv(:,:,idepth)=mod1d(idepth);
end
% write to MOD.true file
MOD=fopen('MOD.Vsv','w');
for i=1:length(depth)
fprintf(MOD,'%6.1f',depth(i));
end
fprintf(MOD,'\n');
for iz=1:length(depth)
for iy=1:nLon
for ix=1:nLat
fprintf(MOD,'%8.4f',vsv(ix,iy,iz));
end
fprintf(MOD,'\n');
end
end
fclose(MOD);

18
utils/init/mod.1d Normal file
View File

@ -0,0 +1,18 @@
2.393
3.367
3.412
3.411
3.398
3.397
3.416
3.452
3.505
3.581
3.689
3.827
4.019
4.389
4.456
4.470
4.475
4.482

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

53
utils/plot/plotgam.m Normal file
View File

@ -0,0 +1,53 @@
%mdlFile='DRadiSurfTomo.inMeasure.dat';
mdlFile='DRadiSurfTomo.inMeasure.dat.iter009';
plotDep=30; % plot horizantal slice at plotDep (30) km
dep=[0,5,10,15,20,25,30,35,40,45,50,55,60,70,80,90,100];
plotDepIndex=find(dep==plotDep);
ndep=length(dep);
minlat=28.0;
maxlat=32.50;
dlat=0.5;
lat=maxlat:-dlat:minlat;
nlat=length(lat);
minlon=90.5;
maxlon=98.5;
dlon=0.5;
lon=minlon:dlon:maxlon;
nlon=length(lon);
aa=load(mdlFile);
mdl=zeros(nlat,nlon,ndep);
% read the velocity model
i=1;
for idep=1:ndep
for ilon=1:nlon
for ilat=1:nlat
mdl(ilat,ilon,idep)=(aa(i,5)-1)/(aa(i,5)+1)*2;
i=i+1;
end
end
end
% smooth the velocity model
dlat=dlat/5;
dlon=dlat/5;
imagelat=maxlat:-dlat:minlat;
imagelon=minlon:dlon:maxlon;
[xin,yin]=meshgrid(lon,lat);
[xout,yout]=meshgrid(imagelon,imagelat);
image=griddata(xin,yin,squeeze(mdl(:,:,plotDepIndex)),xout,yout,'cubic');
% plot velocity
rd=[(0:31)/31,ones(1,32)];
gn=[(0:31)/31,(31:-1:0)/31];
bl=[ones(1,32),(31:-1:0)/31];
rwb=[rd',gn',bl'];
rwb=flipud(rwb);
imagesc(imagelon,imagelat,image); colormap(flipud(rwb)); colorbar('location','eastoutside');
%imagesc(imagelon,imagelat,image); colormap(flipud(jet)); colorbar('location','eastoutside');
hold on;
set(gca,'ydir','normal','Fontsize',14,'pos',[0.15 0.3 0.6 0.4]);

55
utils/plot/plotvsv.m Normal file
View File

@ -0,0 +1,55 @@
%mdlFile='DRadiSurfTomo.inMeasure.dat';
mdlFile='DRadiSurfTomo.inMeasure.dat.iter009';
plotDep=30; % plot horizantal slice at plotDep (30) km
dep=[0,5,10,15,20,25,30,35,40,45,50,55,60,70,80,90,100];
plotDepIndex=find(dep==plotDep);
ndep=length(dep);
minlat=28.0;
maxlat=32.50;
dlat=0.5;
lat=maxlat:-dlat:minlat;
nlat=length(lat);
minlon=90.5;
maxlon=98.5;
dlon=0.5;
lon=minlon:dlon:maxlon;
nlon=length(lon);
aa=load(mdlFile);
mdl=zeros(nlat,nlon,ndep);
% read the velocity model
i=1;
for idep=1:ndep
for ilon=1:nlon
for ilat=1:nlat
mdl(ilat,ilon,idep)=aa(i,4);
i=i+1;
end
end
end
% smooth the velocity model
dlat=dlat/5;
dlon=dlat/5;
imagelat=maxlat:-dlat:minlat;
imagelon=minlon:dlon:maxlon;
[xin,yin]=meshgrid(lon,lat);
[xout,yout]=meshgrid(imagelon,imagelat);
image=griddata(xin,yin,squeeze(mdl(:,:,plotDepIndex)),xout,yout,'cubic');
%{
% plot velocity
rd=[(0:31)/31,ones(1,32)];
gn=[(0:31)/31,(31:-1:0)/31];
bl=[ones(1,32),(31:-1:0)/31];
rwb=[rd',gn',bl'];
rwb=flipud(rwb);
%imagesc(imagelon,imagelat,image); colormap(rwb); colorbar('location','eastoutside');
%}
imagesc(imagelon,imagelat,image); colormap(flipud(jet)); colorbar('location','eastoutside');
hold on;
set(gca,'ydir','normal','Fontsize',14,'pos',[0.15 0.3 0.6 0.4]);