Compare commits

..

No commits in common. "stable" and "v1.2" have entirely different histories.
stable ... v1.2

29 changed files with 3450 additions and 1646 deletions

7
.gitignore vendored
View File

@ -1,7 +0,0 @@
*.o
*.mod
Applications
example_*
.gitignore
temp
DSurfTomo

View File

@ -1,8 +1,15 @@
DSurfTomo is a surface wave tomography program which inverts surface wave dispersion data directly to 3D shear wavespeed models without the intermediate step of constructing the phase or group velocity maps.
The fast marching method (FMM) (Rawlinson et al., 2004) is used to compute, at each period, surface wave travel times and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media.
To show its usage, an example of Taipei Basin tomography is provided, including scripts that are used for data reformating and plotting results. Interested users are recommended to refer to Fang et al. (2015 , GJI) for the detail description of the method.
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3), 1251-1263.
Rawlinson, N. & Sambridge, M., 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method, Geophys. J. Int., 156(3), 631647
#DSurfTomo
DSurfTomo is the surface wave inversion program which can directly invert surface wave
dispersion data to 3D shear wave speed without the intermediate step of constructing
the phase or group velocity maps.A fast march method (FMM) is used to compute, at each
period, surface wave travel times and ray paths between sources and receivers. This
avoids the assumption of great-circle propagation that is used in most surface wave
tomographic studies, but which is not appropriate in complex media.
For detail description of the method, please refer to:
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015).
Direct inversion of surface wave dispersion for three-dimensional shallow
crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3), 1251-1263.
This is the source code without users' manual and examples about how to use it. If you need a detail description and some examples,
feel free to send an email to Hongjian Fang (fanghj@mail.ustc.edu.cn) with a brief introduction about yourself and why you want to
use it. We will be happy to help.

File diff suppressed because it is too large Load Diff

View File

@ -1 +0,0 @@
../src/DSurfTomo

BIN
bin/DSurfTomo Executable file

Binary file not shown.

13
configure vendored
View File

@ -1,17 +1,16 @@
#!/usr/bin/env python
# this is a script to install surf_tomo and surf_tomo_syn in your system
# written by Hongjian Fang(fanghj@mail.ustc.edu.cn)
import os
if 'bin' in os.listdir('.'):
print ('Installation beginning')
print 'installation beginning'
else:
print ('Installation beginning')
os.mkdir('bin')
print 'installation beginning'
os.mkdir('bin')
os.chdir('src')
os.system('make clean')
os.system('make')
os.system('cp DSurfTomo ../bin')
print ('--------------------------------------')
print ('DSurfTomo compiling Finished')
print ('--------------------------------------')
print '--------------------------------------'
print 'Finishing DSurfTomo compiling'
print '--------------------------------------'

BIN
doc/ManualDSurfTomo.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

10
example/.gmtcommands4 Normal file
View File

@ -0,0 +1,10 @@
# GMT common arguments shelf
-Ba0.2f0.1:S velocity (km/s):
-JM2i
-R121.35/121.605/24.975/25.2
-x2.3i
-Y5i
-y-2.7i
-jM2i
EOF

107
example/.gmtdefaults4 Normal file
View File

@ -0,0 +1,107 @@
#
# GMT-SYSTEM 4.5.15 [64-bit] Defaults file
#
#-------- Plot Media Parameters -------------
PAGE_COLOR = white
PAGE_ORIENTATION = landscape
PAPER_MEDIA = a4
#-------- Basemap Annotation Parameters ------
ANNOT_MIN_ANGLE = 20
ANNOT_MIN_SPACING = 0
ANNOT_FONT_PRIMARY = Helvetica
ANNOT_FONT_SIZE_PRIMARY = 6p
ANNOT_OFFSET_PRIMARY = 0.2c
ANNOT_FONT_SECONDARY = Helvetica
ANNOT_FONT_SIZE_SECONDARY = 16p
ANNOT_OFFSET_SECONDARY = 0.2c
DEGREE_SYMBOL = ring
HEADER_FONT = Helvetica
HEADER_FONT_SIZE = 36p
HEADER_OFFSET = 0.5c
LABEL_FONT = Helvetica
LABEL_FONT_SIZE = 5p
LABEL_OFFSET = 0.1c
OBLIQUE_ANNOTATION = 1
PLOT_CLOCK_FORMAT = hh:mm:ss
PLOT_DATE_FORMAT = yyyy-mm-dd
PLOT_DEGREE_FORMAT = ddd:mm:ss
Y_AXIS_TYPE = hor_text
#-------- Basemap Layout Parameters ---------
BASEMAP_AXES = WESN
BASEMAP_FRAME_RGB = black
BASEMAP_TYPE = fancy
FRAME_PEN = 1.25p
FRAME_WIDTH = 0.1c
GRID_CROSS_SIZE_PRIMARY = 0c
GRID_PEN_PRIMARY = 0.25p
GRID_CROSS_SIZE_SECONDARY = 0c
GRID_PEN_SECONDARY = 0.5p
MAP_SCALE_HEIGHT = 0.2c
POLAR_CAP = 85/90
TICK_LENGTH = 0.1c
TICK_PEN = 0.3p
X_AXIS_LENGTH = 25c
Y_AXIS_LENGTH = 15c
X_ORIGIN = 2.5c
Y_ORIGIN = 2.5c
UNIX_TIME = FALSE
UNIX_TIME_POS = BL/-2c/-2c
UNIX_TIME_FORMAT = %Y %b %d %H:%M:%S
#-------- Color System Parameters -----------
COLOR_BACKGROUND = black
COLOR_FOREGROUND = white
COLOR_NAN = 128
COLOR_IMAGE = adobe
COLOR_MODEL = rgb
HSV_MIN_SATURATION = 1
HSV_MAX_SATURATION = 0.1
HSV_MIN_VALUE = 0.3
HSV_MAX_VALUE = 1
#-------- PostScript Parameters -------------
CHAR_ENCODING = ISOLatin1+
DOTS_PR_INCH = 300
GLOBAL_X_SCALE = 1
GLOBAL_Y_SCALE = 1
N_COPIES = 1
PS_COLOR = rgb
PS_IMAGE_COMPRESS = lzw
PS_IMAGE_FORMAT = ascii
PS_LINE_CAP = butt
PS_LINE_JOIN = miter
PS_MITER_LIMIT = 35
PS_VERBOSE = FALSE
TRANSPARENCY = 0
#-------- I/O Format Parameters -------------
D_FORMAT = %.12lg
FIELD_DELIMITER = tab
GRIDFILE_FORMAT = nf
GRIDFILE_SHORTHAND = FALSE
INPUT_CLOCK_FORMAT = hh:mm:ss
INPUT_DATE_FORMAT = yyyy-mm-dd
IO_HEADER = FALSE
N_HEADER_RECS = 1
NAN_RECORDS = pass
OUTPUT_CLOCK_FORMAT = hh:mm:ss
OUTPUT_DATE_FORMAT = yyyy-mm-dd
OUTPUT_DEGREE_FORMAT = D
XY_TOGGLE = FALSE
#-------- Projection Parameters -------------
ELLIPSOID = WGS-84
MAP_SCALE_FACTOR = default
MEASURE_UNIT = cm
#-------- Calendar/Time Parameters ----------
TIME_FORMAT_PRIMARY = full
TIME_FORMAT_SECONDARY = full
TIME_EPOCH = 2000-01-01T12:00:00
TIME_IS_INTERVAL = OFF
TIME_INTERVAL_FRACTION = 0.5
TIME_LANGUAGE = us
TIME_UNIT = d
TIME_WEEK_START = Sunday
Y2K_OFFSET_YEAR = 1950
#-------- Miscellaneous Parameters ----------
HISTORY = TRUE
INTERPOLANT = akima
LINE_STEP = 0.025c
VECTOR_SHAPE = 0
VERBOSE = FALSE

View File

@ -1,15 +1,15 @@
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c INPUT PARAMETERS
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
surfdataTB.dat c: data file
surfdataTB.dat c: data file
18 18 9 c: nx ny nz (grid number in lat lon and depth direction)
25.2 121.35 c: goxd gozd (upper left point,[lat,lon])
0.015 0.017 c: dvxd dvzd (grid interval in lat and lon direction)
20 c: max(sources, receivers)
4.0 1.0 c: weight damp
3 c: sablayers (for computing depth kernel, 2~5)
0.5 2.8 c: minimum velocity, maximum velocity (a priori information)
10 c: maximum iteration
25 c: nsrc*maxf
4.0 0.0 c: weight damp
3 c: nsublayer (numbers of sublayers for each grid interval:grid --> layer)
0.5 2.8 c: minimum velocity, maximum velocity
10 c: maxiter (iteration number)
0.2 c: sparsity fraction
26 c: kmaxRc (followed by periods)
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
@ -18,4 +18,4 @@ surfdataTB.dat c: data file
0 c: kmaxLg
0 c: synthetic flag(0:real data,1:synthetic)
0.02 c: noiselevel
3.0 c: threshold
2.5 c: threshold

View File

@ -0,0 +1,49 @@
#!/bin/csh
#-----------------------------------------------------------
# 2015-06-08 Hongjian Fang
# example:csh plotslicenewVs.gmt DSurfTomo.inMeasure.dat 0.2 0.4 0.8 1.1
#-----------------------------------------------------------
gmtset ANOT_FONT_SIZE 6
gmtset LABEL_FONT_SIZE 6
gmtset FRAME_WIDTH=0.1c
gmtset LABEL_OFFSET=0.1c
gmtset LABEL_FONT_SIZE=5p
gmtset TICK_LENGTH=0.1c
gmtset TICK_PEN=0.3p
set inp3D = $1
set ps = horizVs.ps
set J = -JM2i #size for plot
set cpt = slice.cpt
# start
makecpt -Cseis -T0.6/1.5/0.1 > $cpt #velocity boundary
set RMAP = `minmax -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
psbasemap $RMAP $J -Ba0.1f0.05WseN -P -K -Y5i >$ps
awk '{if($3==depth1) print $1,$2,$4}' depth1=$2 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
rm -rf tmp.grd
psscale -Cslice.cpt -Ba0.1f0.05:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
makecpt -Cseis -T0.8/1.8/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05NwsE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$3 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
makecpt -Cseis -T1.1/2.0/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05WneS -P -K -O -Y-2.7i -X-2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$4 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -K -P >> $ps
makecpt -Cseis -T1.3/2.4/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05SwnE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$5 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -P >> $ps
rm *cpt *grd
ps2eps -f $ps
evince *eps &

View File

@ -1,146 +0,0 @@
#/* -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
#
# File Name : GenerateDSurfTomoInputFile.py
#
# Purpose : Generate the Input File for DSurfTomo using the data themselves
#
# Creation Date : 05-07-2023
#
# Last Modified : Tue 18 Jul 2023 08:10:22 PM CST
#
# Created By : Hongjian Fang: fanghj1990@gmail.com
#
#_._._._._._._._._._._._._._._._._._._._._.*/
import os
import numpy as np
import glob
import pandas as pd
#These are for generating the right format
DataPath = 'TaipeiRawData'
DataNames = 'CDisp*.dat'
wavetype = 2
phasetype = 0
# These following can be changed in DSurfTomo.in
nz = 9
sublayers = 3
minvel = 0.5
maxvel = 2.8
noiselevel = 0.02
datathreshold = 1.5
DataFiles = glob.glob(DataPath+'/'+DataNames)
sta1latall = []
sta1lonall = []
sta2latall = []
sta2lonall = []
periodsall = []
dispersionall = []
stationpairID = []
for ifile in DataFiles:
dispersion = np.loadtxt(ifile)
pairID = ifile.split('/')[-1]
sta1lon = dispersion[0,0]
sta1lat = dispersion[0,1]
sta2lon = dispersion[1,0]
sta2lat = dispersion[1,1]
nperiods,_ = dispersion.shape
nperiods = nperiods - 2
periods = np.zeros(nperiods,)
disper = np.zeros(nperiods,)
for ii in range(nperiods):
periods[ii] = dispersion[ii+2,0]
disper[ii] = dispersion[ii+2,1]
dispersionall = np.hstack([dispersionall,disper])
periodsall = np.hstack([periodsall,periods])
sta1latall = np.hstack([sta1latall,np.ones(nperiods,)*sta1lat])
sta1lonall = np.hstack([sta1lonall,np.ones(nperiods,)*sta1lon])
sta2latall = np.hstack([sta2latall,np.ones(nperiods,)*sta2lat])
sta2lonall = np.hstack([sta2lonall,np.ones(nperiods,)*sta2lon])
stationpairID = stationpairID + [pairID] * nperiods
dataall = pd.DataFrame({'sta1lat':sta1latall, 'sta1lon':sta1lonall, \
'sta2lat':sta2latall, 'sta2lon':sta2lonall, \
'periods':periodsall, 'dispersion': dispersionall, \
'pairid':stationpairID})
dataall = dataall.sort_values(by = ['periods', 'pairid'])
dataall = dataall.set_index('periods')
with open('surfdata.dat','w') as fout:
UniqPeriods = dataall.index.unique()
for iperiod,period in enumerate(UniqPeriods):
datasubperiod = dataall.loc[period]
if isinstance(datasubperiod,pd.Series):
continue
datasubperiod = datasubperiod.reset_index().set_index('sta1lat')
sta1lat = datasubperiod.index.unique()
for ista1 in sta1lat:
datasubstation = datasubperiod.loc[ista1]
if isinstance(datasubstation,pd.DataFrame):
fout.write(f'# {datasubstation.index[0]} {datasubstation["sta1lon"].iloc[0]} {iperiod+1} {wavetype} {phasetype}\n')
for ista2 in range(len(datasubstation)):
fout.write(f'{datasubstation["sta2lat"].iloc[ista2]} {datasubstation["sta2lon"].iloc[ista2]} {datasubstation["dispersion"].iloc[ista2]}\n')
else:
fout.write(f'# {datasubstation.name} {datasubstation["sta1lon"]} {iperiod+1} {wavetype} {phasetype}\n')
fout.write(f'{datasubstation["sta2lat"]} {datasubstation["sta2lon"]} {datasubstation["dispersion"]}\n')
print('Finish reformatting disperison data')
# Determin the grid interval, 1/3 of the smallest station distance
# Weight and Damp, you will have to run the code a couple of time to decide
# The default values is 5.0 and 1.0, respectively
weight = 1.0
damp = 1.0
# Sparsity fraction, this parameter represent the sparsity of the sensitivity matrix and is set to be 0.2 for safe keeping, but could be as low as 0.02.it is not important as long as your code does not throw you memory erros
sparsityfraction = 0.1
# Iteration number, the default is 10 time, most often you get stable results after 4-5 iterations.
maxiteration = 10
distall = np.sqrt((dataall['sta2lat']-dataall['sta1lat'])**2+(dataall['sta2lon']-dataall['sta1lon'])**2)
mindist = distall.min()
gridintval = int(np.ceil(mindist/3*1000))/1000
# Determine the origin, 1 grids
originLat = np.max([np.max(dataall.sta1lat.max()),np.max(dataall.sta2lat.max())]) + 1*gridintval
originLon = np.min([np.min(dataall.sta1lon.min()),np.min(dataall.sta2lon.min())]) - 1*gridintval
largestLat = np.max([dataall['sta1lat'].max()-dataall['sta1lat'].min(),dataall['sta2lat'].max()-dataall['sta2lat'].min()])
largestLon = np.max([dataall['sta1lon'].max()-dataall['sta1lon'].min(),dataall['sta2lon'].max()-dataall['sta2lon'].min()])
inputfile = open('DSurfTomo.in','w')
dummy = 'cccc'
inputfile.write(f'{dummy*10}\n')
inputfile.write(f'{dummy*10}\n')
inputfile.write(f'{dummy*10}\n')
inputfile.write('surfdata.dat\n')
nx = int(np.ceil(largestLat/gridintval))+5
ny = int(np.ceil(largestLon/gridintval))+5
nreceivers = len(dataall.sta1lat.unique())+1
inputfile.write(f'{nx} {ny} {nz}\n')
inputfile.write(f'{originLat:<7.3f} {originLon:7.3f}\n')
inputfile.write(f'{gridintval:<7.3f} {gridintval:7.3f}\n')
inputfile.write(f'{nreceivers}\n')
inputfile.write(f'{weight} {damp}\n')
inputfile.write(f'{sublayers}\n')
inputfile.write(f'{minvel} {maxvel}\n')
inputfile.write(f'{maxiteration}\n')
inputfile.write(f'{sparsityfraction}\n')
nperiods = len(UniqPeriods)
inputfile.write(f'{nperiods}\n')
#inputfile.write(f'{*UniqPeriods}\n')
inputfile.write(' '.join([str(iperiod) for iperiod in UniqPeriods])+'\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'{noiselevel}\n')
inputfile.write(f'{datathreshold}\n')
inputfile.close()
print('Finishing generating input file\n')

View File

@ -6,20 +6,20 @@ import numpy as np
#parameters need to be changed
#start
nx=18
ny=18
nx=75
ny=96
nz=17
minvel=0.8
velgrad=0.5
dep1=np.array([0,0.2,0.4,0.6,0.8,1.1,1.4,1.8,2.5])
#dep1=np.array([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.1,1.3,1.5,1.8,2.1,2.5])
nz=len(dep1)
dep1=1.5+np.array([-1.5, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,10.0,11.0,13.0,16.0,20.0,30.0])
vel1=np.loadtxt('mod.1d')
#end
vs1=np.zeros(nz)
mod=np.zeros((nz*ny,nx))
for k in range(nz):
for j in range(ny):
for i in range(nx):
mod[k*ny+j,i]= minvel+dep1[k]*velgrad
mod[k*ny+j,i]= vel1[k]/1.75#minvel+dep1[k]*velgrad
with open('MOD','w') as fp:
for i in range(nz):
fp.write('%5.1f' % dep1[i])
@ -30,4 +30,4 @@ with open('MOD','w') as fp:
fp.write('%7.3f' % mod[k*ny+j,i])
fp.write('\n')
for i in range(nz):
print (dep1[i]),
print dep1[i],

View File

@ -12,12 +12,11 @@ nz=9
minvel=0.9
velgrad=0.6
dep1=[0,0.2,0.4,0.6,0.8,1.1,1.4,1.8,2.5]
anosize=0.5
anosize=1.0
amplitude=0.4
#end
nmax = np.max([nx,ny])
x=range(1,nmax+1)
y=range(1,nmax+1)
x=range(1,nx+1)
y=range(1,ny+1)
z=range(1,nz+1)
z=np.ones(nz)
bg=np.zeros((nz,nx,ny))
@ -25,7 +24,7 @@ cross=np.zeros((nz,ny))
vs1=np.zeros(nz)
xy=np.kron(np.sin(anosize*np.array(y)),np.sin(anosize*np.array(x)))
xyz=np.kron(z,xy)
pxy=xyz.reshape(nz,nmax,nmax)
pxy=xyz.reshape(nz,nx,ny)
for k in range(nz):
for j in range(ny):
for i in range(nx):
@ -36,7 +35,7 @@ for k in range(nz):
for i in range(nx):
mod[(k)*ny+j,i]=bg[k,i,j]+pxy[k,i,j]*amplitude
k=5
plt.imshow(mod[k*ny:(k+1)*ny,:],cmap='jet_r')
plt.imshow(mod[k*ny:(k+1)*ny,:],cmap='jet_r',interpolation='bicubic')
np.savetxt('MOD.true',mod,fmt='%4.4f')
plt.colorbar()
plt.show()

View File

@ -1,69 +0,0 @@
#!/bin/csh
#-----------------------------------------------------------
# 2015-06-08 Hongjian Fang
# step 1: get velicoty along the track from each depth-layer
# step 2: combine tracks into 2D profile
#-----------------------------------------------------------
# change the following parameters according to your case
# start
set inp3D = DSurfTomo.inMeasure.dat
set pstart = 121.4/25.1 #start point for 2D profile
set pend = 121.55/25.1 #end point for 2D profile
set pstart2 = 121.5/25.0 #start point for 2D profile
set pend2 = 121.5/25.14 #end point for 2D profile
set ddint = 0.017/0.015 #grid interval
# over
set diInt = 0.5 #distance interval (km)
set J = -JX6.0i/-1.5i #size for plot
set cpt = slice.cpt
set ps = figcross.ps
gmt makecpt -Cjet -I -T0.5/2.5/0.1 > $cpt #velocity boundary
# start
set pro2d = tmp.profile.xzv
set RMAP = `gmt gmtinfo -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
rm -fr $pro2d
foreach layer(`awk '{print $3}' $inp3D| uniq`)
set llayer = `echo $layer | awk '{printf "%04d",$1*1000}'`
awk '{if($3==j) print $1,$2,$4}' j=$layer $inp3D |gmt surface -Gtmp.grd $RMAP -I$ddint -T0
# be careful -I: grid spacing for x/y
gmt project -C$pstart -E$pend -G$diInt -Q > track.dat
gmt grdtrack track.dat -Gtmp.grd | awk '{print $3,j,$4}' j=$layer > tmp.D$llayer
cat tmp.D$llayer >> $pro2d
end
#
set RMAP = `gmt gmtinfo -C $pro2d | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
gmt surface $pro2d -Gtmp.grd $RMAP -I$ddint -T0
#gmt grdfilter tmp.grd -D0 -Fg4 -Gtmpf.grd
gmt grdimage tmp.grd $J $RMAP -Bf2.5a5:'Distance (km)':/f0.5a1:'Depth (km)':SenW -C$cpt -K -Y5.2i> $ps
#gmt psscale -Cslice.cpt -Ba0.5f0.25:'Vs': -D2.5i/-0.7i/6.00/0.2h -O -K -P >> $ps
rm -fr tmp.D* tmp.grd tmp.profile.xzv track.dat
# start
set pro2d = tmp.profile.xzv
set RMAP = `gmt gmtinfo -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
rm -fr $pro2d
foreach layer(`awk '{print $3}' $inp3D| uniq`)
set llayer = `echo $layer | awk '{printf "%04d",$1*1000}'`
awk '{if($3==j) print $1,$2,$4}' j=$layer $inp3D |gmt surface -Gtmp.grd $RMAP -I$ddint -T0
# be careful -I: grid spacing for x/y
gmt project -C$pstart2 -E$pend2 -G$diInt -Q > track.dat
gmt grdtrack track.dat -Gtmp.grd | awk '{print $3,j,$4}' j=$layer > tmp.D$llayer
cat tmp.D$llayer >> $pro2d
end
#
set RMAP = `gmt gmtinfo -C $pro2d | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
gmt surface $pro2d -Gtmp.grd $RMAP -I$ddint -T0
#gmt grdfilter tmp.grd -D0 -Fg4 -Gtmpf.grd
gmt grdimage tmp.grd $J $RMAP -Bf2.5a5:'Distance (km)':/f0.5a1:'Depth (km)':SenW -C$cpt -K -O -Y-2.0i>> $ps
gmt psscale -Cslice.cpt -Ba0.5f0.25:'Vs': -D2.5i/-0.7i/6.00/0.2h -O -P >> $ps
rm -fr tmp.D* tmp.grd tmp.profile.xzv track.dat
p
ps2pdf $ps

View File

@ -1,33 +0,0 @@
#!/usr/bin/env python
import numpy as np
from matplotlib import pylab as plt
#parameters you need to change
#begin
numray = 3320 # how many rays do you have (all periods)
rb = 1 # ray index for some period (first one)
re = 50 # ray index for some period (last one)
maxseg = 500 #
#end
n = 0
numseg = np.zeros(numray,)
raylat = np.zeros((numray,maxseg))
raylon = np.zeros((numray,maxseg))
with open('raypath.out') as ray:
for line in ray:
linseg = line.split()
if linseg[0]=='#':
n = n+1
seg = 0
numseg[n-1] = float(linseg[1])
else:
seg = seg+1
raylat[n-1,seg-1] = float(linseg[0])
raylon[n-1,seg-1] = float(linseg[1])
for ii in range(rb,re):
plt.plot(raylon[ii,0:numseg[ii]],raylat[ii,0:numseg[ii]],'k-')
plt.show()

View File

@ -7,42 +7,42 @@
# csh plotslice.gmt SurfTomo.in.tvMeasure.dat 0.2 0.4 0.8 1.4
#-----------------------------------------------------------
#gmt set ANOT_FONT_SIZE 6
#gmt set LABEL_FONT_SIZE 6
#gmt set FRAME_WIDTH=0.1c
#gmt set LABEL_OFFSET=0.1c
#gmt set LABEL_FONT_SIZE=5p
#gmt set TICK_LENGTH=0.1c
#gmt set TICK_PEN=0.3p
gmtset ANOT_FONT_SIZE 6
gmtset LABEL_FONT_SIZE 6
gmtset FRAME_WIDTH=0.1c
gmtset LABEL_OFFSET=0.1c
gmtset LABEL_FONT_SIZE=5p
gmtset TICK_LENGTH=0.1c
gmtset TICK_PEN=0.3p
set inp3D = $1
set ps = horizVsnew.true.ps
set ps = horizVsnew.ps
set J = -JM2i #size for plot
set cpt = slice.cpt
# start
gmt makecpt -Cseis -D -T0.5/2.5/0.1 > $cpt #velocity boundary
set RMAP = `gmt gmtinfo -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
gmt psbasemap $RMAP $J -Ba0.1f0.05WseN -P -K -Y5i >$ps
awk '{if($3==depth1) print $1,$2,$4}' depth1=$2 $inp3D|gmt xyz2grd -R -I0.017/0.015 -Gtmp.grd
gmt grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
makecpt -Cseis -T0.6/1.5/0.1 > $cpt #velocity boundary
set RMAP = `minmax -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
psbasemap $RMAP $J -Ba0.1f0.05WseN -P -K -Y5i >$ps
awk '{if($3==depth1) print $1,$2,$4}' depth1=$2 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
rm -rf tmp.grd
gmt psscale -Cslice.cpt -Ba0.1f0.05:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
psscale -Cslice.cpt -Ba0.1f0.05:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
#gmt makecpt -Cseis -D -T0.8/1.8/0.1 > $cpt #velocity boundary
gmt psbasemap $RMAP $J -Ba0.1f0.05NwsE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$3 $inp3D|gmt xyz2grd -R -I0.017/0.015 -Gtmp.grd
gmt grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
gmt psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
makecpt -Cseis -T0.8/1.8/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05NwsE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$3 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
#gmt makecpt -Cseis -D -T1.1/2.0/0.1 > $cpt #velocity boundary
gmt psbasemap $RMAP $J -Ba0.1f0.05WneS -P -K -O -Y-2.7i -X-2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$4 $inp3D|gmt xyz2grd -R -I0.017/0.015 -Gtmp.grd
gmt grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
gmt psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -K -P >> $ps
makecpt -Cseis -T1.1/2.0/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05WneS -P -K -O -Y-2.7i -X-2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$4 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -K -P >> $ps
#gmt makecpt -Cseis -D -T1.3/2.4/0.1 > $cpt #velocity boundary
gmt psbasemap $RMAP $J -Ba0.1f0.05SwnE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$5 $inp3D|gmt xyz2grd -R -I0.017/0.015 -Gtmp.grd
gmt grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
gmt psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -P >> $ps
makecpt -Cseis -T1.3/2.4/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05SwnE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$5 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -P >> $ps

View File

@ -92,17 +92,6 @@ subroutine depthkernel(nx,ny,nz,vel,pvRc,sen_vsRc,sen_vpRc,sen_rhoRc, &
dlncg_dlnvs(nn,i) = (cg2(nn)-cg1(nn))/(dlnVs*vsz(i))
enddo
!note here, no integral from z1 to z2 is needed. The grid based nodes
! have already taken into consideration of it. Layer based need integration.
! Test passed
!if (i == 1) then
! dlncg_dlnvs(1:kmaxRc,i) = dlncg_dlnvs(1:kmaxRc,i)*thkm(1)/2.0
!else if (i == mmax) then
! dlncg_dlnvs(1:kmaxRc,i) = dlncg_dlnvs(1:kmaxRc,i)*thkm(mmax-1)/2.0
!else
! dlncg_dlnvs(1:kmaxRc,i) = dlncg_dlnvs(1:kmaxRc,i)*(thkm(i-1)+thkm(i))/2.0
!endif
vpm(i) = vpz(i) - 0.5*dlnVp*vpz(i)
call refineGrid2LayerMdl(minthk,mmax,depm,vpm,vsm,rhom,&
@ -121,16 +110,6 @@ subroutine depthkernel(nx,ny,nz,vel,pvRc,sen_vsRc,sen_vpRc,sen_rhoRc, &
! cga = 0.5*(cg1(nn)+cg2(nn))
dlncg_dlnvp(nn,i) = (cg2(nn)-cg1(nn))/(dlnVp*vpz(i))
enddo
!if (i == 1) then
! dlncg_dlnvp(1:kmaxRc,i) = dlncg_dlnvp(1:kmaxRc,i)*thkm(1)/2.0
!else if (i == mmax) then
! dlncg_dlnvp(1:kmaxRc,i) = dlncg_dlnvp(1:kmaxRc,i)*thkm(mmax-1)/2.0
!else
! dlncg_dlnvp(1:kmaxRc,i) = dlncg_dlnvp(1:kmaxRc,i)*(thkm(i-1)+thkm(i))/2.0
!endif
rhom(i) = rhoz(i) - 0.5*dlnrho*rhoz(i)
call refineGrid2LayerMdl(minthk,mmax,depm,vpm,vsm,rhom,&
rmax,rdep,rvp,rvs,rrho,rthk)
@ -148,15 +127,6 @@ subroutine depthkernel(nx,ny,nz,vel,pvRc,sen_vsRc,sen_vpRc,sen_rhoRc, &
! cga = 0.5*(cg1(nn)+cg2(nn))
dlncg_dlnrho(nn,i) = (cg2(nn)-cg1(nn))/(dlnrho*rhoz(i))
enddo
! if (i == 1) then
! dlncg_dlnrho(1:kmaxRc,i) = dlncg_dlnrho(1:kmaxRc,i)*thkm(1)/2.0
! else if (i == mmax) then
! dlncg_dlnrho(1:kmaxRc,i) = dlncg_dlnrho(1:kmaxRc,i)*thkm(mmax-1)/2.0
! else
! dlncg_dlnrho(1:kmaxRc,i) = dlncg_dlnrho(1:kmaxRc,i)*(thkm(i-1)+thkm(i))/2.0
! endif
enddo
sen_vsRc((jj-1)*nx+ii,1:kmaxRc,1:mmax)=dlncg_dlnvs(1:kmaxRc,1:mmax)
sen_vpRc((jj-1)*nx+ii,1:kmaxRc,1:mmax)=dlncg_dlnvp(1:kmaxRc,1:mmax)
@ -940,7 +910,7 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
goxdf,gozdf,dvxdf,dvzdf,kmaxRc,kmaxRg,kmaxLc,kmaxLg, &
tRc,tRg,tLc,tLg,wavetype,igrt,periods,depz,minthk, &
scxf,sczf,rcxf,rczf,nrc1,nsrcsurf1,kmax,nsrcsurf,nrcf, &
nar)
nar,writepath)
USE globalp
USE traveltime
IMPLICIT NONE
@ -1027,10 +997,11 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
integer ii,jj,kk,nn,istep
integer level,maxlevel,maxleveld,HorizonType,VerticalType,PorS
real,parameter::ftol=1e-4
integer writepath
integer ig, igroup
gdx=8
gdz=8
gdx=5
gdz=5
asgr=1
sgdl=8
sgs=8
@ -1098,7 +1069,6 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
if(kmaxRc.gt.0) then
iwave=2
igr=0
print*,'Rayleigh wave phase velocity depth kernel'
call depthkernel(nx,ny,nz,vels,pvRc,sen_vsRc,sen_vpRc, &
sen_rhoRc,iwave,igr,kmaxRc,tRc,depz,minthk)
endif
@ -1108,9 +1078,8 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
igr=0
! print*,kmax
call caldespersion(nx,ny,nz,vels,pvRc, &
iwave,igr,kmaxRg,tRg,depz,minthk)
iwave,igr,kmax,tRg,depz,minthk)
igr=1
print*,'Rayleigh wave group velocity depth kernel'
call depthkernel(nx,ny,nz,vels,pvRg,sen_vsRg,sen_vpRg, &
sen_rhoRg,iwave,igr,kmaxRg,tRg,depz,minthk)
endif
@ -1119,14 +1088,14 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
iwave=1
igr=0
call depthkernel(nx,ny,nz,vels,pvLc,sen_vsLc,sen_vpLc, &
sen_rhoLc,iwave,igr,kmaxLc,tLc,depz,minthk)
sen_rhoLc,iwave,igr,kmax,tLc,depz,minthk)
endif
if(kmaxLg.gt.0) then
iwave=1
igr=0
call caldespersion(nx,ny,nz,vels,pvLc, &
iwave,igr,kmaxLg,tLg,depz,minthk)
iwave,igr,kmax,tLg,depz,minthk)
igr=1
call depthkernel(nx,ny,nz,vels,pvLg,sen_vsLg,sen_vpLg, &
sen_rhoLg,iwave,igr,kmaxLg,tLg,depz,minthk)
@ -1283,7 +1252,6 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
ALLOCATE(ttnr(idm2,idm1))
ALLOCATE(nstsr(idm2,idm1))
ENDIF
!ttnr(1:nnzb,1:nnxb)=ttn(1:nnzb,1:nnxb)
ttnr=ttn
nstsr=nsts
ogx=vnl
@ -1378,11 +1346,13 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
! if required.
!
if (igrt(srcnum,knumi) == 0 .or. (ig == 2 .and. igrt(srcnum,knumi) == 1)) then
! a little stupid, remember to change latter
if (igrt(srcnum,knumi) == 1) then
call gridder(velf0)
endif
count11=count11+1
CALL rpaths(x,z,fdm,rcxf(istep,srcnum,knumi),rczf(istep,srcnum,knumi))
CALL rpaths(x,z,fdm,rcxf(istep,srcnum,knumi),rczf(istep,srcnum,knumi),writepath)
row(1:nparpi)=0.0
! change the Brocher relationship if depth is larger than 35 km
if (depz(nz-1)<35.0) then
do jj=1,nvz
do kk=1,nvx
if(abs(fdm(jj,kk)).ge.ftol) then
@ -1400,28 +1370,6 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
endif
enddo
enddo
! use a different formulation between Vp, Vs, and Rho, according to Luosong's
else
do jj=1,nvz
do kk=1,nvx
if(abs(fdm(jj,kk)).ge.ftol) then
coe_a=(2.2110-0.8984*2*vels(kk+1,jj+1,1:nz-1)+&
0.2786*3*vels(kk+1,jj+1,1:nz-1)**2-0.02412*4*vels(kk+1,jj+1,1:nz-1)**3)
vpft=0.9098 + 2.2110*vels(kk+1,jj+1,1:nz-1) - 0.8984*vels(kk+1,jj+1,1:nz-1)**2+ &
0.2786*vels(kk+1,jj+1,1:nz-1)**3 - 0.02412*vels(kk+1,jj+1,1:nz-1)**4
coe_rho=coe_a*(1.6612-0.4721*2*vpft+&
0.0671*3*vpft**2-0.0043*4*vpft**3+&
0.000106*5*vpft**4)
row((jj-1)*nvx+kk:(nz-2)*nvz*nvx+(jj-1)*nvx+kk:nvx*nvz)=&
(sen_vp(jj*(nvx+2)+kk+1,knumi,1:nz-1)*coe_a+&
sen_rho(jj*(nvx+2)+kk+1,knumi,1:nz-1)*coe_rho+&
sen_vs(jj*(nvx+2)+kk+1,knumi,1:nz-1))*fdm(jj,kk)
endif
enddo
enddo
endif
do nn=1,nparpi
if(abs(row(nn)).gt.ftol) then
nar=nar+1
@ -1768,7 +1716,7 @@ END SUBROUTINE srtimes
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!SUBROUTINE rpaths(wrgf,csid,cfd,scx,scz)
!SUBROUTINE rpaths()
SUBROUTINE rpaths(scx,scz,fdm,surfrcx,surfrcz)
SUBROUTINE rpaths(scx,scz,fdm,surfrcx,surfrcz,writepath)
USE globalp
IMPLICIT NONE
INTEGER, PARAMETER :: i5=SELECTED_REAL_KIND(5,10)
@ -1789,6 +1737,7 @@ SUBROUTINE rpaths(scx,scz,fdm,surfrcx,surfrcz)
!fang!------------------------------------------------
real fdm(0:nvz+1,0:nvx+1)
REAL(KIND=i10) surfrcx,surfrcz
integer writepath
!fang!------------------------------------------------
!
! ipx,ipz = Coordinates of cell containing current point
@ -2273,14 +2222,14 @@ SUBROUTINE rpaths(scx,scz,fdm,surfrcx,surfrcz)
! Write ray paths to output file
!
!fang! IF(wrgf.EQ.csid.OR.wrgf.LT.0)THEN
!if(writepath == 1) then
! WRITE(40,*)'#',nrp
! DO j=1,nrp
! rayx=(pi/2-rgx(j))*180.0/pi
! rayz=rgz(j)*180.0/pi
! WRITE(40,*)rayx,rayz
! ENDDO
!endif
if(writepath == 1) then
WRITE(40,*)'#',nrp
DO j=1,nrp
rayx=(pi/2-rgx(j))*180.0/pi
rayz=rgz(j)*180.0/pi
WRITE(40,*)rayx,rayz
ENDDO
endif
!fang! ENDIF
!
! Write partial derivatives to output file

BIN
src/DSurfTomo Executable file

Binary file not shown.

View File

@ -1,19 +1,17 @@
CMD = DSurfTomo
FC = gfortran
FFLAGS = -O -ffixed-line-length-none -ffloat-store\
-fbounds-check -m64 -mcmodel=medium
FFLAGS = -O3 -ffixed-line-length-none -ffloat-store\
-W -fbounds-check -m64 -mcmodel=medium
F90SRCS = lsmrDataModule.f90 lsmrblasInterface.f90\
lsmrblas.f90 lsmrModule.f90 delsph.f90\
aprod.f90 gaussian.f90 getpercentile.f90
FSRCS = surfdisp96.f slarnv.f slaruv.f
OBJS = $(F90SRCS:%.f90=%.o) $(FSRCS:%.f=%.o) CalSurfG.o main.o
aprod.f90 gaussian.f90 main.f90
FSRCS = surfdisp96.f
OBJS = $(F90SRCS:%.f90=%.o) $(FSRCS:%.f=%.o) CalSurfG.o
all:$(CMD)
$(CMD):$(OBJS)
$(FC) -fopenmp $^ -o $@
CalSurfG.o:CalSurfG.f90
$(FC) -fopenmp $(FFLAGS) -c $< -o $@
main.o:main.f90
$(FC) -fopenmp $(FFLAGS) -c $< -o $@
%.o: %.f90
$(FC) $(FFLAGS) -c $(@F:.o=.f90) -o $@
%.o: %.f

View File

@ -1,51 +0,0 @@
SUBROUTINE getpercentile(N,array,q25,q75)
real q25
real q75
integer N
real,intent(in) :: array(*)
integer idx
real RA(N)
RA(1:N) = array(1:N)
L=N/2+1
IR=N
!The index L will be decremented from its initial value during the
!"hiring" (heap creation) phase. Once it reaches 1, the index IR
!will be decremented from its initial value down to 1 during the
!"retirement-and-promotion" (heap selection) phase.
10 continue
if(L > 1)then
L=L-1
RRA=RA(L)
else
RRA=RA(IR)
RA(IR)=RA(1)
IR=IR-1
if(IR.eq.1)then
RA(1)=RRA
idx = int(0.25*N)
q25 = RA(idx)
idx = int(0.75*N)
q75 = RA(idx)
return
end if
end if
I=L
J=L+L
20 if(J.le.IR)then
if(J < IR)then
if(RA(J) < RA(J+1)) J=J+1
end if
if(RRA < RA(J))then
RA(I)=RA(J)
I=J; J=J+J
else
J=IR+1
end if
goto 20
end if
RA(I)=RRA
goto 10
END

File diff suppressed because it is too large Load Diff

View File

@ -1,178 +0,0 @@
*> \brief \b SLARNV returns a vector of random numbers from a uniform or normal distribution.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARNV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarnv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarnv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarnv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLARNV( IDIST, ISEED, N, X )
*
* .. Scalar Arguments ..
* INTEGER IDIST, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARNV returns a vector of n random real numbers from a uniform or
*> normal distribution.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IDIST
*> \verbatim
*> IDIST is INTEGER
*> Specifies the distribution of the random numbers:
*> = 1: uniform (0,1)
*> = 2: uniform (-1,1)
*> = 3: normal (0,1)
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of random numbers to be generated.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is REAL array, dimension (N)
*> The generated random numbers.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> This routine calls the auxiliary routine SLARUV to generate random
*> real numbers from a uniform (0,1) distribution, in batches of up to
*> 128 using vectorisable code. The Box-Muller method is used to
*> transform numbers from a uniform to a normal distribution.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLARNV( IDIST, ISEED, N, X )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER IDIST, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, TWO
PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0 )
INTEGER LV
PARAMETER ( LV = 128 )
REAL TWOPI
PARAMETER ( TWOPI = 6.2831853071795864769252867663E+0 )
* ..
* .. Local Scalars ..
INTEGER I, IL, IL2, IV
* ..
* .. Local Arrays ..
REAL U( LV )
* ..
* .. Intrinsic Functions ..
INTRINSIC COS, LOG, MIN, SQRT
* ..
* .. External Subroutines ..
EXTERNAL SLARUV
* ..
* .. Executable Statements ..
*
DO 40 IV = 1, N, LV / 2
IL = MIN( LV / 2, N-IV+1 )
IF( IDIST.EQ.3 ) THEN
IL2 = 2*IL
ELSE
IL2 = IL
END IF
*
* Call SLARUV to generate IL2 numbers from a uniform (0,1)
* distribution (IL2 <= LV)
*
CALL SLARUV( ISEED, IL2, U )
*
IF( IDIST.EQ.1 ) THEN
*
* Copy generated numbers
*
DO 10 I = 1, IL
X( IV+I-1 ) = U( I )
10 CONTINUE
ELSE IF( IDIST.EQ.2 ) THEN
*
* Convert generated numbers to uniform (-1,1) distribution
*
DO 20 I = 1, IL
X( IV+I-1 ) = TWO*U( I ) - ONE
20 CONTINUE
ELSE IF( IDIST.EQ.3 ) THEN
*
* Convert generated numbers to normal (0,1) distribution
*
DO 30 I = 1, IL
X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )*
$ COS( TWOPI*U( 2*I ) )
30 CONTINUE
END IF
40 CONTINUE
RETURN
*
* End of SLARNV
*
END

View File

@ -1,447 +0,0 @@
*> \brief \b SLARUV returns a vector of n random real numbers from a uniform distribution.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARUV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaruv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaruv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaruv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLARUV( ISEED, N, X )
*
* .. Scalar Arguments ..
* INTEGER N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL X( N )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARUV returns a vector of n random real numbers from a uniform (0,1)
*> distribution (n <= 128).
*>
*> This is an auxiliary routine called by SLARNV and CLARNV.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of random numbers to be generated. N <= 128.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is REAL array, dimension (N)
*> The generated random numbers.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> This routine uses a multiplicative congruential method with modulus
*> 2**48 and multiplier 33952834046453 (see G.S.Fishman,
*> 'Multiplicative congruential random number generators with modulus
*> 2**b: an exhaustive analysis for b = 32 and a partial analysis for
*> b = 48', Math. Comp. 189, pp 331-344, 1990).
*>
*> 48-bit integers are stored in 4 integer array elements with 12 bits
*> per element. Hence the routine is portable across machines with
*> integers of 32 bits or more.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLARUV( ISEED, N, X )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL X( N )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E0 )
INTEGER LV, IPW2
REAL R
PARAMETER ( LV = 128, IPW2 = 4096, R = ONE / IPW2 )
* ..
* .. Local Scalars ..
INTEGER I, I1, I2, I3, I4, IT1, IT2, IT3, IT4, J
* ..
* .. Local Arrays ..
INTEGER MM( LV, 4 )
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MOD, REAL
* ..
* .. Data statements ..
DATA ( MM( 1, J ), J = 1, 4 ) / 494, 322, 2508,
$ 2549 /
DATA ( MM( 2, J ), J = 1, 4 ) / 2637, 789, 3754,
$ 1145 /
DATA ( MM( 3, J ), J = 1, 4 ) / 255, 1440, 1766,
$ 2253 /
DATA ( MM( 4, J ), J = 1, 4 ) / 2008, 752, 3572,
$ 305 /
DATA ( MM( 5, J ), J = 1, 4 ) / 1253, 2859, 2893,
$ 3301 /
DATA ( MM( 6, J ), J = 1, 4 ) / 3344, 123, 307,
$ 1065 /
DATA ( MM( 7, J ), J = 1, 4 ) / 4084, 1848, 1297,
$ 3133 /
DATA ( MM( 8, J ), J = 1, 4 ) / 1739, 643, 3966,
$ 2913 /
DATA ( MM( 9, J ), J = 1, 4 ) / 3143, 2405, 758,
$ 3285 /
DATA ( MM( 10, J ), J = 1, 4 ) / 3468, 2638, 2598,
$ 1241 /
DATA ( MM( 11, J ), J = 1, 4 ) / 688, 2344, 3406,
$ 1197 /
DATA ( MM( 12, J ), J = 1, 4 ) / 1657, 46, 2922,
$ 3729 /
DATA ( MM( 13, J ), J = 1, 4 ) / 1238, 3814, 1038,
$ 2501 /
DATA ( MM( 14, J ), J = 1, 4 ) / 3166, 913, 2934,
$ 1673 /
DATA ( MM( 15, J ), J = 1, 4 ) / 1292, 3649, 2091,
$ 541 /
DATA ( MM( 16, J ), J = 1, 4 ) / 3422, 339, 2451,
$ 2753 /
DATA ( MM( 17, J ), J = 1, 4 ) / 1270, 3808, 1580,
$ 949 /
DATA ( MM( 18, J ), J = 1, 4 ) / 2016, 822, 1958,
$ 2361 /
DATA ( MM( 19, J ), J = 1, 4 ) / 154, 2832, 2055,
$ 1165 /
DATA ( MM( 20, J ), J = 1, 4 ) / 2862, 3078, 1507,
$ 4081 /
DATA ( MM( 21, J ), J = 1, 4 ) / 697, 3633, 1078,
$ 2725 /
DATA ( MM( 22, J ), J = 1, 4 ) / 1706, 2970, 3273,
$ 3305 /
DATA ( MM( 23, J ), J = 1, 4 ) / 491, 637, 17,
$ 3069 /
DATA ( MM( 24, J ), J = 1, 4 ) / 931, 2249, 854,
$ 3617 /
DATA ( MM( 25, J ), J = 1, 4 ) / 1444, 2081, 2916,
$ 3733 /
DATA ( MM( 26, J ), J = 1, 4 ) / 444, 4019, 3971,
$ 409 /
DATA ( MM( 27, J ), J = 1, 4 ) / 3577, 1478, 2889,
$ 2157 /
DATA ( MM( 28, J ), J = 1, 4 ) / 3944, 242, 3831,
$ 1361 /
DATA ( MM( 29, J ), J = 1, 4 ) / 2184, 481, 2621,
$ 3973 /
DATA ( MM( 30, J ), J = 1, 4 ) / 1661, 2075, 1541,
$ 1865 /
DATA ( MM( 31, J ), J = 1, 4 ) / 3482, 4058, 893,
$ 2525 /
DATA ( MM( 32, J ), J = 1, 4 ) / 657, 622, 736,
$ 1409 /
DATA ( MM( 33, J ), J = 1, 4 ) / 3023, 3376, 3992,
$ 3445 /
DATA ( MM( 34, J ), J = 1, 4 ) / 3618, 812, 787,
$ 3577 /
DATA ( MM( 35, J ), J = 1, 4 ) / 1267, 234, 2125,
$ 77 /
DATA ( MM( 36, J ), J = 1, 4 ) / 1828, 641, 2364,
$ 3761 /
DATA ( MM( 37, J ), J = 1, 4 ) / 164, 4005, 2460,
$ 2149 /
DATA ( MM( 38, J ), J = 1, 4 ) / 3798, 1122, 257,
$ 1449 /
DATA ( MM( 39, J ), J = 1, 4 ) / 3087, 3135, 1574,
$ 3005 /
DATA ( MM( 40, J ), J = 1, 4 ) / 2400, 2640, 3912,
$ 225 /
DATA ( MM( 41, J ), J = 1, 4 ) / 2870, 2302, 1216,
$ 85 /
DATA ( MM( 42, J ), J = 1, 4 ) / 3876, 40, 3248,
$ 3673 /
DATA ( MM( 43, J ), J = 1, 4 ) / 1905, 1832, 3401,
$ 3117 /
DATA ( MM( 44, J ), J = 1, 4 ) / 1593, 2247, 2124,
$ 3089 /
DATA ( MM( 45, J ), J = 1, 4 ) / 1797, 2034, 2762,
$ 1349 /
DATA ( MM( 46, J ), J = 1, 4 ) / 1234, 2637, 149,
$ 2057 /
DATA ( MM( 47, J ), J = 1, 4 ) / 3460, 1287, 2245,
$ 413 /
DATA ( MM( 48, J ), J = 1, 4 ) / 328, 1691, 166,
$ 65 /
DATA ( MM( 49, J ), J = 1, 4 ) / 2861, 496, 466,
$ 1845 /
DATA ( MM( 50, J ), J = 1, 4 ) / 1950, 1597, 4018,
$ 697 /
DATA ( MM( 51, J ), J = 1, 4 ) / 617, 2394, 1399,
$ 3085 /
DATA ( MM( 52, J ), J = 1, 4 ) / 2070, 2584, 190,
$ 3441 /
DATA ( MM( 53, J ), J = 1, 4 ) / 3331, 1843, 2879,
$ 1573 /
DATA ( MM( 54, J ), J = 1, 4 ) / 769, 336, 153,
$ 3689 /
DATA ( MM( 55, J ), J = 1, 4 ) / 1558, 1472, 2320,
$ 2941 /
DATA ( MM( 56, J ), J = 1, 4 ) / 2412, 2407, 18,
$ 929 /
DATA ( MM( 57, J ), J = 1, 4 ) / 2800, 433, 712,
$ 533 /
DATA ( MM( 58, J ), J = 1, 4 ) / 189, 2096, 2159,
$ 2841 /
DATA ( MM( 59, J ), J = 1, 4 ) / 287, 1761, 2318,
$ 4077 /
DATA ( MM( 60, J ), J = 1, 4 ) / 2045, 2810, 2091,
$ 721 /
DATA ( MM( 61, J ), J = 1, 4 ) / 1227, 566, 3443,
$ 2821 /
DATA ( MM( 62, J ), J = 1, 4 ) / 2838, 442, 1510,
$ 2249 /
DATA ( MM( 63, J ), J = 1, 4 ) / 209, 41, 449,
$ 2397 /
DATA ( MM( 64, J ), J = 1, 4 ) / 2770, 1238, 1956,
$ 2817 /
DATA ( MM( 65, J ), J = 1, 4 ) / 3654, 1086, 2201,
$ 245 /
DATA ( MM( 66, J ), J = 1, 4 ) / 3993, 603, 3137,
$ 1913 /
DATA ( MM( 67, J ), J = 1, 4 ) / 192, 840, 3399,
$ 1997 /
DATA ( MM( 68, J ), J = 1, 4 ) / 2253, 3168, 1321,
$ 3121 /
DATA ( MM( 69, J ), J = 1, 4 ) / 3491, 1499, 2271,
$ 997 /
DATA ( MM( 70, J ), J = 1, 4 ) / 2889, 1084, 3667,
$ 1833 /
DATA ( MM( 71, J ), J = 1, 4 ) / 2857, 3438, 2703,
$ 2877 /
DATA ( MM( 72, J ), J = 1, 4 ) / 2094, 2408, 629,
$ 1633 /
DATA ( MM( 73, J ), J = 1, 4 ) / 1818, 1589, 2365,
$ 981 /
DATA ( MM( 74, J ), J = 1, 4 ) / 688, 2391, 2431,
$ 2009 /
DATA ( MM( 75, J ), J = 1, 4 ) / 1407, 288, 1113,
$ 941 /
DATA ( MM( 76, J ), J = 1, 4 ) / 634, 26, 3922,
$ 2449 /
DATA ( MM( 77, J ), J = 1, 4 ) / 3231, 512, 2554,
$ 197 /
DATA ( MM( 78, J ), J = 1, 4 ) / 815, 1456, 184,
$ 2441 /
DATA ( MM( 79, J ), J = 1, 4 ) / 3524, 171, 2099,
$ 285 /
DATA ( MM( 80, J ), J = 1, 4 ) / 1914, 1677, 3228,
$ 1473 /
DATA ( MM( 81, J ), J = 1, 4 ) / 516, 2657, 4012,
$ 2741 /
DATA ( MM( 82, J ), J = 1, 4 ) / 164, 2270, 1921,
$ 3129 /
DATA ( MM( 83, J ), J = 1, 4 ) / 303, 2587, 3452,
$ 909 /
DATA ( MM( 84, J ), J = 1, 4 ) / 2144, 2961, 3901,
$ 2801 /
DATA ( MM( 85, J ), J = 1, 4 ) / 3480, 1970, 572,
$ 421 /
DATA ( MM( 86, J ), J = 1, 4 ) / 119, 1817, 3309,
$ 4073 /
DATA ( MM( 87, J ), J = 1, 4 ) / 3357, 676, 3171,
$ 2813 /
DATA ( MM( 88, J ), J = 1, 4 ) / 837, 1410, 817,
$ 2337 /
DATA ( MM( 89, J ), J = 1, 4 ) / 2826, 3723, 3039,
$ 1429 /
DATA ( MM( 90, J ), J = 1, 4 ) / 2332, 2803, 1696,
$ 1177 /
DATA ( MM( 91, J ), J = 1, 4 ) / 2089, 3185, 1256,
$ 1901 /
DATA ( MM( 92, J ), J = 1, 4 ) / 3780, 184, 3715,
$ 81 /
DATA ( MM( 93, J ), J = 1, 4 ) / 1700, 663, 2077,
$ 1669 /
DATA ( MM( 94, J ), J = 1, 4 ) / 3712, 499, 3019,
$ 2633 /
DATA ( MM( 95, J ), J = 1, 4 ) / 150, 3784, 1497,
$ 2269 /
DATA ( MM( 96, J ), J = 1, 4 ) / 2000, 1631, 1101,
$ 129 /
DATA ( MM( 97, J ), J = 1, 4 ) / 3375, 1925, 717,
$ 1141 /
DATA ( MM( 98, J ), J = 1, 4 ) / 1621, 3912, 51,
$ 249 /
DATA ( MM( 99, J ), J = 1, 4 ) / 3090, 1398, 981,
$ 3917 /
DATA ( MM( 100, J ), J = 1, 4 ) / 3765, 1349, 1978,
$ 2481 /
DATA ( MM( 101, J ), J = 1, 4 ) / 1149, 1441, 1813,
$ 3941 /
DATA ( MM( 102, J ), J = 1, 4 ) / 3146, 2224, 3881,
$ 2217 /
DATA ( MM( 103, J ), J = 1, 4 ) / 33, 2411, 76,
$ 2749 /
DATA ( MM( 104, J ), J = 1, 4 ) / 3082, 1907, 3846,
$ 3041 /
DATA ( MM( 105, J ), J = 1, 4 ) / 2741, 3192, 3694,
$ 1877 /
DATA ( MM( 106, J ), J = 1, 4 ) / 359, 2786, 1682,
$ 345 /
DATA ( MM( 107, J ), J = 1, 4 ) / 3316, 382, 124,
$ 2861 /
DATA ( MM( 108, J ), J = 1, 4 ) / 1749, 37, 1660,
$ 1809 /
DATA ( MM( 109, J ), J = 1, 4 ) / 185, 759, 3997,
$ 3141 /
DATA ( MM( 110, J ), J = 1, 4 ) / 2784, 2948, 479,
$ 2825 /
DATA ( MM( 111, J ), J = 1, 4 ) / 2202, 1862, 1141,
$ 157 /
DATA ( MM( 112, J ), J = 1, 4 ) / 2199, 3802, 886,
$ 2881 /
DATA ( MM( 113, J ), J = 1, 4 ) / 1364, 2423, 3514,
$ 3637 /
DATA ( MM( 114, J ), J = 1, 4 ) / 1244, 2051, 1301,
$ 1465 /
DATA ( MM( 115, J ), J = 1, 4 ) / 2020, 2295, 3604,
$ 2829 /
DATA ( MM( 116, J ), J = 1, 4 ) / 3160, 1332, 1888,
$ 2161 /
DATA ( MM( 117, J ), J = 1, 4 ) / 2785, 1832, 1836,
$ 3365 /
DATA ( MM( 118, J ), J = 1, 4 ) / 2772, 2405, 1990,
$ 361 /
DATA ( MM( 119, J ), J = 1, 4 ) / 1217, 3638, 2058,
$ 2685 /
DATA ( MM( 120, J ), J = 1, 4 ) / 1822, 3661, 692,
$ 3745 /
DATA ( MM( 121, J ), J = 1, 4 ) / 1245, 327, 1194,
$ 2325 /
DATA ( MM( 122, J ), J = 1, 4 ) / 2252, 3660, 20,
$ 3609 /
DATA ( MM( 123, J ), J = 1, 4 ) / 3904, 716, 3285,
$ 3821 /
DATA ( MM( 124, J ), J = 1, 4 ) / 2774, 1842, 2046,
$ 3537 /
DATA ( MM( 125, J ), J = 1, 4 ) / 997, 3987, 2107,
$ 517 /
DATA ( MM( 126, J ), J = 1, 4 ) / 2573, 1368, 3508,
$ 3017 /
DATA ( MM( 127, J ), J = 1, 4 ) / 1148, 1848, 3525,
$ 2141 /
DATA ( MM( 128, J ), J = 1, 4 ) / 545, 2366, 3801,
$ 1537 /
* ..
* .. Executable Statements ..
*
I1 = ISEED( 1 )
I2 = ISEED( 2 )
I3 = ISEED( 3 )
I4 = ISEED( 4 )
*
DO 10 I = 1, MIN( N, LV )
*
20 CONTINUE
*
* Multiply the seed by i-th power of the multiplier modulo 2**48
*
IT4 = I4*MM( I, 4 )
IT3 = IT4 / IPW2
IT4 = IT4 - IPW2*IT3
IT3 = IT3 + I3*MM( I, 4 ) + I4*MM( I, 3 )
IT2 = IT3 / IPW2
IT3 = IT3 - IPW2*IT2
IT2 = IT2 + I2*MM( I, 4 ) + I3*MM( I, 3 ) + I4*MM( I, 2 )
IT1 = IT2 / IPW2
IT2 = IT2 - IPW2*IT1
IT1 = IT1 + I1*MM( I, 4 ) + I2*MM( I, 3 ) + I3*MM( I, 2 ) +
$ I4*MM( I, 1 )
IT1 = MOD( IT1, IPW2 )
*
* Convert 48-bit integer to a real number in the interval (0,1)
*
X( I ) = R*( REAL( IT1 )+R*( REAL( IT2 )+R*( REAL( IT3 )+R*
$ REAL( IT4 ) ) ) )
*
IF (X( I ).EQ.1.0) THEN
* If a real number has n bits of precision, and the first
* n bits of the 48-bit integer above happen to be all 1 (which
* will occur about once every 2**n calls), then X( I ) will
* be rounded to exactly 1.0. In IEEE single precision arithmetic,
* this will happen relatively often since n = 24.
* Since X( I ) is not supposed to return exactly 0.0 or 1.0,
* the statistically correct thing to do in this situation is
* simply to iterate again.
* N.B. the case X( I ) = 0.0 should not be possible.
I1 = I1 + 2
I2 = I2 + 2
I3 = I3 + 2
I4 = I4 + 2
GOTO 20
END IF
*
10 CONTINUE
*
* Return final value of seed
*
ISEED( 1 ) = IT1
ISEED( 2 ) = IT2
ISEED( 3 ) = IT3
ISEED( 4 ) = IT4
RETURN
*
* End of SLARUV
*
END

View File

@ -56,7 +56,7 @@ c-----
integer NL, NL2, NLAY
parameter(NL=200,NLAY=200,NL2=NL+NL)
integer NP
parameter (NP=80)
parameter (NP=60)
c-----
c LIN - unit for FORTRAN read from terminal
@ -308,7 +308,7 @@ c ----- print *, itst,iq,t(k),t1a,t1b,cc0,cc1,gvel
if(iverb(ifunc).eq.0)then
iverb(ifunc) = 1
write(LOT,*)'improper initial value in disper - no zero found'
!write(*,*)'WARNING:improper initial value in disper - no zero found'
write(*,*)'WARNING:improper initial value in disper - no zero found'
write(LOT,*)'in fundamental mode '
write(LOT,*)'This may be due to low velocity zone '
write(LOT,*)'causing reverse phase velocity dispersion, '
@ -500,7 +500,7 @@ c 2 - Rayleigh Wave
c iflag I*4 0 - Initialize
c 1 - Make model for Love or Rayleigh Wave
c-----
parameter(NL=200,NP=80)
parameter(NL=200,NP=60)
real*4 d(NL),a(NL),b(NL),rho(NL),rtp(NL),dtp(NL),btp(NL)
integer mmax,llw
c common/modl/ d,a,b,rho,rtp,dtp,btp
@ -563,7 +563,7 @@ c nev = 0 force interval halving
c nev = 1 permit neville iteration if conditions are proper
c nev = 2 neville iteration is being used
c-----
parameter (NL=200,NP=80)
parameter (NL=200,NP=60)
implicit double precision (a-h,o-z)
real*4 d(NL),a(NL),b(NL),rho(NL),rtp(NL),dtp(NL),btp(NL)
dimension x(20),y(20)
@ -704,7 +704,7 @@ c
function dltar1(wvno,omega,d,a,b,rho,rtp,dtp,btp,mmax,llw,twopi)
c find SH dispersion values.
c
parameter (NL=200,NP=80)
parameter (NL=200,NP=60)
implicit double precision (a-h,o-z)
real*4 d(NL),a(NL),b(NL),rho(NL),rtp(NL),dtp(NL),btp(NL)
integer llw,mmax
@ -768,7 +768,7 @@ c
c & a0,cpcq,cpy,cpz,cqw,cqx,xy,xz,wy,wz)
c find P-SV dispersion values.
c
parameter (NL=200,NP=80)
parameter (NL=200,NP=60)
implicit double precision (a-h,o-z)
dimension e(5),ee(5),ca(5,5)
real*4 d(NL),a(NL),b(NL),rho(NL),rtp(NL),dtp(NL),btp(NL)