Compare commits

..

22 Commits
v1.3 ... stable

Author SHA1 Message Date
Hongjian Fang
a651faf927 correcting the readme 2023-09-30 15:09:01 +08:00
Hongjian Fang
ad99372e34 Change the empirical relationship when inverting for upper mantle 2023-09-29 15:08:18 +08:00
Hongjian Fang
37eb3e8f4b add python script for generating both the data and the input file for DSurfTomo 2023-07-31 09:19:29 +08:00
Hongjian Fang
8d6695f308 update manual for seismic algorithm training in Inner Mogonia 2023 2023-07-19 11:11:17 +08:00
Hongjian Fang
65c202802c
Update Makefile 2022-06-28 18:08:39 +08:00
Hongjian Fang
809e164bcb Merge branch 'stable' of https://github.com/HongjianFang/DSurfTomo into stable 2022-05-25 19:15:50 +08:00
Hongjian Fang
a0fceeb5fb back to v1.3 2022-05-25 19:10:09 +08:00
Hongjian Fang
2fec5df95b back to v1.3 2022-05-25 18:53:44 +08:00
Hongjian Fang
3d66dbdd0f removing the vorotomo option since it is not stable 2021-11-11 18:20:40 +08:00
Hongjian Fang
f35c3d77da Merge branch 'stable' of https://github.com/HongjianFang/DSurfTomo into stable 2021-02-17 08:43:03 +08:00
Hongjian Fang
ba0a5db4ab output more digits, important for small scale cases 2021-02-17 08:41:34 +08:00
Hongjian Fang
b25eaaa096 bug fix if there are two types of data 2020-08-19 16:44:33 -04:00
Hongjian Fang
f88ac4d8cd Adaptive cells based on ray sampling 2020-07-08 20:51:56 -04:00
Hongjian Fang
e4d1c1549f disable output of lsmr 2020-04-21 06:54:49 -04:00
Hongjian
d8424b27b5 small bug fixed 2020-04-19 14:07:47 -04:00
Hongjian Fang
74e80f4b74 change G*Gp 2020-04-19 13:36:13 -04:00
Hongjian
b657c68d28 - 2020-04-19 07:52:07 -04:00
Hongjian
9aead30bf2 incorporating random projections based inversion using Poisson Voronoi cells 2020-04-16 20:47:03 -04:00
Hongjian Fang
82ebf4283d clean version of main.f90 2019-01-15 08:57:51 -05:00
Hongjian Fang
404f55cd0f comment some unnecessary warnings
before vorotomo
2019-01-12 12:56:08 -05:00
Hongjian Fang
f2a0f8bc4d
Update README.md 2018-07-05 08:52:09 -04:00
Hongjian Fang
07cf4d199b
Update README.md 2018-07-05 08:50:48 -04:00
20 changed files with 1559 additions and 3285 deletions

7
.gitignore vendored Normal file
View File

@ -0,0 +1,7 @@
*.o
*.mod
Applications
example_*
.gitignore
temp
DSurfTomo

View File

@ -1,15 +1,8 @@
#DSurfTomo
DSurfTomo is the surface wave inversion program which can directly invert surface wave
dispersion data to 3D shear wave speed without the intermediate step of constructing
the phase or group velocity maps.A fast march method (FMM) is used to compute, at each
period, surface wave travel times and ray paths between sources and receivers. This
avoids the assumption of great-circle propagation that is used in most surface wave
tomographic studies, but which is not appropriate in complex media.
For detail description of the method, please refer to:
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015).
Direct inversion of surface wave dispersion for three-dimensional shallow
crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3), 1251-1263.
DSurfTomo is a surface wave tomography program which inverts surface wave dispersion data directly to 3D shear wavespeed models without the intermediate step of constructing the phase or group velocity maps.
The fast marching method (FMM) (Rawlinson et al., 2004) is used to compute, at each period, surface wave travel times and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media.
To show its usage, an example of Taipei Basin tomography is provided, including scripts that are used for data reformating and plotting results. Interested users are recommended to refer to Fang et al. (2015 , GJI) for the detail description of the method.
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3), 1251-1263.
Rawlinson, N. & Sambridge, M., 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method, Geophys. J. Int., 156(3), 631647
This is the source code without users' manual and examples about how to use it. If you need a detail description and some examples,
feel free to send an email to Hongjian Fang (fanghj@mail.ustc.edu.cn) with a brief introduction about yourself and why you want to
use it. We will be happy to help.

File diff suppressed because it is too large Load Diff

11
configure vendored
View File

@ -1,16 +1,17 @@
#!/usr/bin/env python
# this is a script to install surf_tomo and surf_tomo_syn in your system
# written by Hongjian Fang(fanghj@mail.ustc.edu.cn)
import os
if 'bin' in os.listdir('.'):
print 'installation beginning'
print ('Installation beginning')
else:
print 'installation beginning'
print ('Installation beginning')
os.mkdir('bin')
os.chdir('src')
os.system('make clean')
os.system('make')
os.system('cp DSurfTomo ../bin')
print '--------------------------------------'
print 'Finishing DSurfTomo compiling'
print '--------------------------------------'
print ('--------------------------------------')
print ('DSurfTomo compiling Finished')
print ('--------------------------------------')

BIN
doc/ManualDSurfTomoV1.4.pdf Normal file

Binary file not shown.

View File

@ -6,7 +6,7 @@ surfdataTB.dat c: data file
25.2 121.35 c: goxd gozd (upper left point,[lat,lon])
0.015 0.017 c: dvxd dvzd (grid interval in lat and lon direction)
20 c: max(sources, receivers)
4.0 0.1 c: weight damp
4.0 1.0 c: weight damp
3 c: sablayers (for computing depth kernel, 2~5)
0.5 2.8 c: minimum velocity, maximum velocity (a priori information)
10 c: maximum iteration
@ -18,4 +18,4 @@ surfdataTB.dat c: data file
0 c: kmaxLg
0 c: synthetic flag(0:real data,1:synthetic)
0.02 c: noiselevel
0.5 c: threshold
3.0 c: threshold

View File

@ -0,0 +1,146 @@
#/* -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
#
# File Name : GenerateDSurfTomoInputFile.py
#
# Purpose : Generate the Input File for DSurfTomo using the data themselves
#
# Creation Date : 05-07-2023
#
# Last Modified : Tue 18 Jul 2023 08:10:22 PM CST
#
# Created By : Hongjian Fang: fanghj1990@gmail.com
#
#_._._._._._._._._._._._._._._._._._._._._.*/
import os
import numpy as np
import glob
import pandas as pd
#These are for generating the right format
DataPath = 'TaipeiRawData'
DataNames = 'CDisp*.dat'
wavetype = 2
phasetype = 0
# These following can be changed in DSurfTomo.in
nz = 9
sublayers = 3
minvel = 0.5
maxvel = 2.8
noiselevel = 0.02
datathreshold = 1.5
DataFiles = glob.glob(DataPath+'/'+DataNames)
sta1latall = []
sta1lonall = []
sta2latall = []
sta2lonall = []
periodsall = []
dispersionall = []
stationpairID = []
for ifile in DataFiles:
dispersion = np.loadtxt(ifile)
pairID = ifile.split('/')[-1]
sta1lon = dispersion[0,0]
sta1lat = dispersion[0,1]
sta2lon = dispersion[1,0]
sta2lat = dispersion[1,1]
nperiods,_ = dispersion.shape
nperiods = nperiods - 2
periods = np.zeros(nperiods,)
disper = np.zeros(nperiods,)
for ii in range(nperiods):
periods[ii] = dispersion[ii+2,0]
disper[ii] = dispersion[ii+2,1]
dispersionall = np.hstack([dispersionall,disper])
periodsall = np.hstack([periodsall,periods])
sta1latall = np.hstack([sta1latall,np.ones(nperiods,)*sta1lat])
sta1lonall = np.hstack([sta1lonall,np.ones(nperiods,)*sta1lon])
sta2latall = np.hstack([sta2latall,np.ones(nperiods,)*sta2lat])
sta2lonall = np.hstack([sta2lonall,np.ones(nperiods,)*sta2lon])
stationpairID = stationpairID + [pairID] * nperiods
dataall = pd.DataFrame({'sta1lat':sta1latall, 'sta1lon':sta1lonall, \
'sta2lat':sta2latall, 'sta2lon':sta2lonall, \
'periods':periodsall, 'dispersion': dispersionall, \
'pairid':stationpairID})
dataall = dataall.sort_values(by = ['periods', 'pairid'])
dataall = dataall.set_index('periods')
with open('surfdata.dat','w') as fout:
UniqPeriods = dataall.index.unique()
for iperiod,period in enumerate(UniqPeriods):
datasubperiod = dataall.loc[period]
if isinstance(datasubperiod,pd.Series):
continue
datasubperiod = datasubperiod.reset_index().set_index('sta1lat')
sta1lat = datasubperiod.index.unique()
for ista1 in sta1lat:
datasubstation = datasubperiod.loc[ista1]
if isinstance(datasubstation,pd.DataFrame):
fout.write(f'# {datasubstation.index[0]} {datasubstation["sta1lon"].iloc[0]} {iperiod+1} {wavetype} {phasetype}\n')
for ista2 in range(len(datasubstation)):
fout.write(f'{datasubstation["sta2lat"].iloc[ista2]} {datasubstation["sta2lon"].iloc[ista2]} {datasubstation["dispersion"].iloc[ista2]}\n')
else:
fout.write(f'# {datasubstation.name} {datasubstation["sta1lon"]} {iperiod+1} {wavetype} {phasetype}\n')
fout.write(f'{datasubstation["sta2lat"]} {datasubstation["sta2lon"]} {datasubstation["dispersion"]}\n')
print('Finish reformatting disperison data')
# Determin the grid interval, 1/3 of the smallest station distance
# Weight and Damp, you will have to run the code a couple of time to decide
# The default values is 5.0 and 1.0, respectively
weight = 1.0
damp = 1.0
# Sparsity fraction, this parameter represent the sparsity of the sensitivity matrix and is set to be 0.2 for safe keeping, but could be as low as 0.02.it is not important as long as your code does not throw you memory erros
sparsityfraction = 0.1
# Iteration number, the default is 10 time, most often you get stable results after 4-5 iterations.
maxiteration = 10
distall = np.sqrt((dataall['sta2lat']-dataall['sta1lat'])**2+(dataall['sta2lon']-dataall['sta1lon'])**2)
mindist = distall.min()
gridintval = int(np.ceil(mindist/3*1000))/1000
# Determine the origin, 1 grids
originLat = np.max([np.max(dataall.sta1lat.max()),np.max(dataall.sta2lat.max())]) + 1*gridintval
originLon = np.min([np.min(dataall.sta1lon.min()),np.min(dataall.sta2lon.min())]) - 1*gridintval
largestLat = np.max([dataall['sta1lat'].max()-dataall['sta1lat'].min(),dataall['sta2lat'].max()-dataall['sta2lat'].min()])
largestLon = np.max([dataall['sta1lon'].max()-dataall['sta1lon'].min(),dataall['sta2lon'].max()-dataall['sta2lon'].min()])
inputfile = open('DSurfTomo.in','w')
dummy = 'cccc'
inputfile.write(f'{dummy*10}\n')
inputfile.write(f'{dummy*10}\n')
inputfile.write(f'{dummy*10}\n')
inputfile.write('surfdata.dat\n')
nx = int(np.ceil(largestLat/gridintval))+5
ny = int(np.ceil(largestLon/gridintval))+5
nreceivers = len(dataall.sta1lat.unique())+1
inputfile.write(f'{nx} {ny} {nz}\n')
inputfile.write(f'{originLat:<7.3f} {originLon:7.3f}\n')
inputfile.write(f'{gridintval:<7.3f} {gridintval:7.3f}\n')
inputfile.write(f'{nreceivers}\n')
inputfile.write(f'{weight} {damp}\n')
inputfile.write(f'{sublayers}\n')
inputfile.write(f'{minvel} {maxvel}\n')
inputfile.write(f'{maxiteration}\n')
inputfile.write(f'{sparsityfraction}\n')
nperiods = len(UniqPeriods)
inputfile.write(f'{nperiods}\n')
#inputfile.write(f'{*UniqPeriods}\n')
inputfile.write(' '.join([str(iperiod) for iperiod in UniqPeriods])+'\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'{noiselevel}\n')
inputfile.write(f'{datathreshold}\n')
inputfile.close()
print('Finishing generating input file\n')

View File

@ -8,10 +8,11 @@ import numpy as np
#start
nx=18
ny=18
nz=8
minvel=0.8
velgrad=0.5
dep1=np.array([0,0.2,0.4,0.6,0.8,1.1,1.4,1.8,2.5])
#dep1=np.array([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.1,1.3,1.5,1.8,2.1,2.5])
nz=len(dep1)
#end
vs1=np.zeros(nz)
mod=np.zeros((nz*ny,nx))
@ -29,4 +30,4 @@ with open('MOD','w') as fp:
fp.write('%7.3f' % mod[k*ny+j,i])
fp.write('\n')
for i in range(nz):
print dep1[i],
print (dep1[i]),

69
scripts/plotcross.gmt Normal file
View File

@ -0,0 +1,69 @@
#!/bin/csh
#-----------------------------------------------------------
# 2015-06-08 Hongjian Fang
# step 1: get velicoty along the track from each depth-layer
# step 2: combine tracks into 2D profile
#-----------------------------------------------------------
# change the following parameters according to your case
# start
set inp3D = DSurfTomo.inMeasure.dat
set pstart = 121.4/25.1 #start point for 2D profile
set pend = 121.55/25.1 #end point for 2D profile
set pstart2 = 121.5/25.0 #start point for 2D profile
set pend2 = 121.5/25.14 #end point for 2D profile
set ddint = 0.017/0.015 #grid interval
# over
set diInt = 0.5 #distance interval (km)
set J = -JX6.0i/-1.5i #size for plot
set cpt = slice.cpt
set ps = figcross.ps
gmt makecpt -Cjet -I -T0.5/2.5/0.1 > $cpt #velocity boundary
# start
set pro2d = tmp.profile.xzv
set RMAP = `gmt gmtinfo -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
rm -fr $pro2d
foreach layer(`awk '{print $3}' $inp3D| uniq`)
set llayer = `echo $layer | awk '{printf "%04d",$1*1000}'`
awk '{if($3==j) print $1,$2,$4}' j=$layer $inp3D |gmt surface -Gtmp.grd $RMAP -I$ddint -T0
# be careful -I: grid spacing for x/y
gmt project -C$pstart -E$pend -G$diInt -Q > track.dat
gmt grdtrack track.dat -Gtmp.grd | awk '{print $3,j,$4}' j=$layer > tmp.D$llayer
cat tmp.D$llayer >> $pro2d
end
#
set RMAP = `gmt gmtinfo -C $pro2d | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
gmt surface $pro2d -Gtmp.grd $RMAP -I$ddint -T0
#gmt grdfilter tmp.grd -D0 -Fg4 -Gtmpf.grd
gmt grdimage tmp.grd $J $RMAP -Bf2.5a5:'Distance (km)':/f0.5a1:'Depth (km)':SenW -C$cpt -K -Y5.2i> $ps
#gmt psscale -Cslice.cpt -Ba0.5f0.25:'Vs': -D2.5i/-0.7i/6.00/0.2h -O -K -P >> $ps
rm -fr tmp.D* tmp.grd tmp.profile.xzv track.dat
# start
set pro2d = tmp.profile.xzv
set RMAP = `gmt gmtinfo -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
rm -fr $pro2d
foreach layer(`awk '{print $3}' $inp3D| uniq`)
set llayer = `echo $layer | awk '{printf "%04d",$1*1000}'`
awk '{if($3==j) print $1,$2,$4}' j=$layer $inp3D |gmt surface -Gtmp.grd $RMAP -I$ddint -T0
# be careful -I: grid spacing for x/y
gmt project -C$pstart2 -E$pend2 -G$diInt -Q > track.dat
gmt grdtrack track.dat -Gtmp.grd | awk '{print $3,j,$4}' j=$layer > tmp.D$llayer
cat tmp.D$llayer >> $pro2d
end
#
set RMAP = `gmt gmtinfo -C $pro2d | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
gmt surface $pro2d -Gtmp.grd $RMAP -I$ddint -T0
#gmt grdfilter tmp.grd -D0 -Fg4 -Gtmpf.grd
gmt grdimage tmp.grd $J $RMAP -Bf2.5a5:'Distance (km)':/f0.5a1:'Depth (km)':SenW -C$cpt -K -O -Y-2.0i>> $ps
gmt psscale -Cslice.cpt -Ba0.5f0.25:'Vs': -D2.5i/-0.7i/6.00/0.2h -O -P >> $ps
rm -fr tmp.D* tmp.grd tmp.profile.xzv track.dat
p
ps2pdf $ps

View File

@ -7,42 +7,42 @@
# csh plotslice.gmt SurfTomo.in.tvMeasure.dat 0.2 0.4 0.8 1.4
#-----------------------------------------------------------
gmtset ANOT_FONT_SIZE 6
gmtset LABEL_FONT_SIZE 6
gmtset FRAME_WIDTH=0.1c
gmtset LABEL_OFFSET=0.1c
gmtset LABEL_FONT_SIZE=5p
gmtset TICK_LENGTH=0.1c
gmtset TICK_PEN=0.3p
#gmt set ANOT_FONT_SIZE 6
#gmt set LABEL_FONT_SIZE 6
#gmt set FRAME_WIDTH=0.1c
#gmt set LABEL_OFFSET=0.1c
#gmt set LABEL_FONT_SIZE=5p
#gmt set TICK_LENGTH=0.1c
#gmt set TICK_PEN=0.3p
set inp3D = $1
set ps = horizVsnew.ps
set ps = horizVsnew.true.ps
set J = -JM2i #size for plot
set cpt = slice.cpt
# start
makecpt -Cseis -T0.6/1.5/0.1 > $cpt #velocity boundary
set RMAP = `minmax -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
psbasemap $RMAP $J -Ba0.1f0.05WseN -P -K -Y5i >$ps
awk '{if($3==depth1) print $1,$2,$4}' depth1=$2 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
gmt makecpt -Cseis -D -T0.5/2.5/0.1 > $cpt #velocity boundary
set RMAP = `gmt gmtinfo -C $inp3D | awk '{print "-R"$1"/"$2"/"$3"/"$4}'`
gmt psbasemap $RMAP $J -Ba0.1f0.05WseN -P -K -Y5i >$ps
awk '{if($3==depth1) print $1,$2,$4}' depth1=$2 $inp3D|gmt xyz2grd -R -I0.017/0.015 -Gtmp.grd
gmt grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
rm -rf tmp.grd
psscale -Cslice.cpt -Ba0.1f0.05:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
gmt psscale -Cslice.cpt -Ba0.1f0.05:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
makecpt -Cseis -T0.8/1.8/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05NwsE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$3 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
#gmt makecpt -Cseis -D -T0.8/1.8/0.1 > $cpt #velocity boundary
gmt psbasemap $RMAP $J -Ba0.1f0.05NwsE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$3 $inp3D|gmt xyz2grd -R -I0.017/0.015 -Gtmp.grd
gmt grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
gmt psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.15i/3.00/0.2h -O -K -P >> $ps
makecpt -Cseis -T1.1/2.0/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05WneS -P -K -O -Y-2.7i -X-2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$4 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -K -P >> $ps
#gmt makecpt -Cseis -D -T1.1/2.0/0.1 > $cpt #velocity boundary
gmt psbasemap $RMAP $J -Ba0.1f0.05WneS -P -K -O -Y-2.7i -X-2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$4 $inp3D|gmt xyz2grd -R -I0.017/0.015 -Gtmp.grd
gmt grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
gmt psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -K -P >> $ps
makecpt -Cseis -T1.3/2.4/0.1 > $cpt #velocity boundary
psbasemap $RMAP $J -Ba0.1f0.05SwnE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$5 $inp3D|xyz2grd -R -I0.017/0.015 -Gtmp.grd
grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -P >> $ps
#gmt makecpt -Cseis -D -T1.3/2.4/0.1 > $cpt #velocity boundary
gmt psbasemap $RMAP $J -Ba0.1f0.05SwnE -P -K -O -X2.3i >>$ps
awk '{if($3==depth2) print $1,$2,$4}' depth2=$5 $inp3D|gmt xyz2grd -R -I0.017/0.015 -Gtmp.grd
gmt grdimage tmp.grd $J $RMAP -BSenW -E100 -C$cpt -O -K >> $ps
gmt psscale -Cslice.cpt -Ba0.2f0.1:'S velocity (km/s)': -D1.0i/-0.25i/3.00/0.2h -O -P >> $ps

View File

@ -940,7 +940,7 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
goxdf,gozdf,dvxdf,dvzdf,kmaxRc,kmaxRg,kmaxLc,kmaxLg, &
tRc,tRg,tLc,tLg,wavetype,igrt,periods,depz,minthk, &
scxf,sczf,rcxf,rczf,nrc1,nsrcsurf1,kmax,nsrcsurf,nrcf, &
nar,writepath)
nar)
USE globalp
USE traveltime
IMPLICIT NONE
@ -1027,11 +1027,10 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
integer ii,jj,kk,nn,istep
integer level,maxlevel,maxleveld,HorizonType,VerticalType,PorS
real,parameter::ftol=1e-4
integer writepath
integer ig, igroup
gdx=5
gdz=5
gdx=8
gdz=8
asgr=1
sgdl=8
sgs=8
@ -1099,6 +1098,7 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
if(kmaxRc.gt.0) then
iwave=2
igr=0
print*,'Rayleigh wave phase velocity depth kernel'
call depthkernel(nx,ny,nz,vels,pvRc,sen_vsRc,sen_vpRc, &
sen_rhoRc,iwave,igr,kmaxRc,tRc,depz,minthk)
endif
@ -1108,8 +1108,9 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
igr=0
! print*,kmax
call caldespersion(nx,ny,nz,vels,pvRc, &
iwave,igr,kmax,tRg,depz,minthk)
iwave,igr,kmaxRg,tRg,depz,minthk)
igr=1
print*,'Rayleigh wave group velocity depth kernel'
call depthkernel(nx,ny,nz,vels,pvRg,sen_vsRg,sen_vpRg, &
sen_rhoRg,iwave,igr,kmaxRg,tRg,depz,minthk)
endif
@ -1125,7 +1126,7 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
iwave=1
igr=0
call caldespersion(nx,ny,nz,vels,pvLc, &
iwave,igr,kmax,tLg,depz,minthk)
iwave,igr,kmaxLg,tLg,depz,minthk)
igr=1
call depthkernel(nx,ny,nz,vels,pvLg,sen_vsLg,sen_vpLg, &
sen_rhoLg,iwave,igr,kmaxLg,tLg,depz,minthk)
@ -1282,6 +1283,7 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
ALLOCATE(ttnr(idm2,idm1))
ALLOCATE(nstsr(idm2,idm1))
ENDIF
!ttnr(1:nnzb,1:nnxb)=ttn(1:nnzb,1:nnxb)
ttnr=ttn
nstsr=nsts
ogx=vnl
@ -1376,13 +1378,11 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
! if required.
!
if (igrt(srcnum,knumi) == 0 .or. (ig == 2 .and. igrt(srcnum,knumi) == 1)) then
! a little stupid, remember to change latter
if (igrt(srcnum,knumi) == 1) then
call gridder(velf0)
endif
count11=count11+1
CALL rpaths(x,z,fdm,rcxf(istep,srcnum,knumi),rczf(istep,srcnum,knumi),writepath)
CALL rpaths(x,z,fdm,rcxf(istep,srcnum,knumi),rczf(istep,srcnum,knumi))
row(1:nparpi)=0.0
! change the Brocher relationship if depth is larger than 35 km
if (depz(nz-1)<35.0) then
do jj=1,nvz
do kk=1,nvx
if(abs(fdm(jj,kk)).ge.ftol) then
@ -1400,6 +1400,28 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
endif
enddo
enddo
! use a different formulation between Vp, Vs, and Rho, according to Luosong's
else
do jj=1,nvz
do kk=1,nvx
if(abs(fdm(jj,kk)).ge.ftol) then
coe_a=(2.2110-0.8984*2*vels(kk+1,jj+1,1:nz-1)+&
0.2786*3*vels(kk+1,jj+1,1:nz-1)**2-0.02412*4*vels(kk+1,jj+1,1:nz-1)**3)
vpft=0.9098 + 2.2110*vels(kk+1,jj+1,1:nz-1) - 0.8984*vels(kk+1,jj+1,1:nz-1)**2+ &
0.2786*vels(kk+1,jj+1,1:nz-1)**3 - 0.02412*vels(kk+1,jj+1,1:nz-1)**4
coe_rho=coe_a*(1.6612-0.4721*2*vpft+&
0.0671*3*vpft**2-0.0043*4*vpft**3+&
0.000106*5*vpft**4)
row((jj-1)*nvx+kk:(nz-2)*nvz*nvx+(jj-1)*nvx+kk:nvx*nvz)=&
(sen_vp(jj*(nvx+2)+kk+1,knumi,1:nz-1)*coe_a+&
sen_rho(jj*(nvx+2)+kk+1,knumi,1:nz-1)*coe_rho+&
sen_vs(jj*(nvx+2)+kk+1,knumi,1:nz-1))*fdm(jj,kk)
endif
enddo
enddo
endif
do nn=1,nparpi
if(abs(row(nn)).gt.ftol) then
nar=nar+1
@ -1746,7 +1768,7 @@ END SUBROUTINE srtimes
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!SUBROUTINE rpaths(wrgf,csid,cfd,scx,scz)
!SUBROUTINE rpaths()
SUBROUTINE rpaths(scx,scz,fdm,surfrcx,surfrcz,writepath)
SUBROUTINE rpaths(scx,scz,fdm,surfrcx,surfrcz)
USE globalp
IMPLICIT NONE
INTEGER, PARAMETER :: i5=SELECTED_REAL_KIND(5,10)
@ -1767,7 +1789,6 @@ SUBROUTINE rpaths(scx,scz,fdm,surfrcx,surfrcz,writepath)
!fang!------------------------------------------------
real fdm(0:nvz+1,0:nvx+1)
REAL(KIND=i10) surfrcx,surfrcz
integer writepath
!fang!------------------------------------------------
!
! ipx,ipz = Coordinates of cell containing current point
@ -2252,14 +2273,14 @@ SUBROUTINE rpaths(scx,scz,fdm,surfrcx,surfrcz,writepath)
! Write ray paths to output file
!
!fang! IF(wrgf.EQ.csid.OR.wrgf.LT.0)THEN
if(writepath == 1) then
WRITE(40,*)'#',nrp
DO j=1,nrp
rayx=(pi/2-rgx(j))*180.0/pi
rayz=rgz(j)*180.0/pi
WRITE(40,*)rayx,rayz
ENDDO
endif
!if(writepath == 1) then
! WRITE(40,*)'#',nrp
! DO j=1,nrp
! rayx=(pi/2-rgx(j))*180.0/pi
! rayz=rgz(j)*180.0/pi
! WRITE(40,*)rayx,rayz
! ENDDO
!endif
!fang! ENDIF
!
! Write partial derivatives to output file

View File

@ -1,17 +1,19 @@
CMD = DSurfTomo
FC = gfortran
FFLAGS = -O3 -ffixed-line-length-none -ffloat-store\
-W -fbounds-check -m64 -mcmodel=medium
FFLAGS = -O -ffixed-line-length-none -ffloat-store\
-fbounds-check -m64 -mcmodel=medium
F90SRCS = lsmrDataModule.f90 lsmrblasInterface.f90\
lsmrblas.f90 lsmrModule.f90 delsph.f90\
aprod.f90 gaussian.f90 main.f90
FSRCS = surfdisp96.f
OBJS = $(F90SRCS:%.f90=%.o) $(FSRCS:%.f=%.o) CalSurfG.o
aprod.f90 gaussian.f90 getpercentile.f90
FSRCS = surfdisp96.f slarnv.f slaruv.f
OBJS = $(F90SRCS:%.f90=%.o) $(FSRCS:%.f=%.o) CalSurfG.o main.o
all:$(CMD)
$(CMD):$(OBJS)
$(FC) -fopenmp $^ -o $@
CalSurfG.o:CalSurfG.f90
$(FC) -fopenmp $(FFLAGS) -c $< -o $@
main.o:main.f90
$(FC) -fopenmp $(FFLAGS) -c $< -o $@
%.o: %.f90
$(FC) $(FFLAGS) -c $(@F:.o=.f90) -o $@
%.o: %.f

51
src/getpercentile.f90 Normal file
View File

@ -0,0 +1,51 @@
SUBROUTINE getpercentile(N,array,q25,q75)
real q25
real q75
integer N
real,intent(in) :: array(*)
integer idx
real RA(N)
RA(1:N) = array(1:N)
L=N/2+1
IR=N
!The index L will be decremented from its initial value during the
!"hiring" (heap creation) phase. Once it reaches 1, the index IR
!will be decremented from its initial value down to 1 during the
!"retirement-and-promotion" (heap selection) phase.
10 continue
if(L > 1)then
L=L-1
RRA=RA(L)
else
RRA=RA(IR)
RA(IR)=RA(1)
IR=IR-1
if(IR.eq.1)then
RA(1)=RRA
idx = int(0.25*N)
q25 = RA(idx)
idx = int(0.75*N)
q75 = RA(idx)
return
end if
end if
I=L
J=L+L
20 if(J.le.IR)then
if(J < IR)then
if(RA(J) < RA(J+1)) J=J+1
end if
if(RRA < RA(J))then
RA(I)=RA(J)
I=J; J=J+J
else
J=IR+1
end if
goto 20
end if
RA(I)=RRA
goto 10
END

View File

@ -20,6 +20,7 @@
program SurfTomo
use lsmrModule, only:lsmr
use lsmrblasInterface, only : dnrm2
use omp_lib
implicit none
! VARIABLE DEFINE
@ -62,8 +63,9 @@ program SurfTomo
integer,dimension(:),allocatable::nsrc1
integer,dimension(:,:),allocatable::periods
real,dimension(:),allocatable::rw
integer,dimension(:),allocatable::iw,col
real,dimension(:),allocatable::dv,norm
integer,dimension(:),allocatable::iw,col,nrow
real,dimension(:),allocatable::dv,norm,dvsub,dvstd,dvall
! real,dimension(:),allocatable::dvall
real,dimension(:,:,:),allocatable::vsf
real,dimension(:,:,:),allocatable::vsftrue
character strf
@ -96,34 +98,22 @@ program SurfTomo
real spfra
real noiselevel
integer ifsyn
integer writepath
real averdws
real maxnorm
real threshold,threshold0
real threshold0,q25,q75
! FOR MODEL VARIATION
!------------------------------------------------
integer idx
integer counte
real stdvs
! integer numrand
! real,allocatable,dimension(:,:)::modstat
! real,allocatable,dimension(:)::modsig
real gaussian
external gaussian
integer modest
counte=0
! OPEN FILES FIRST TO OUTPUT THE PROCESS
open(34,file='IterVel.out')
nout=36
open(nout,file='lsmr.txt')
!nout=36
!open(nout,file='lsmr.txt')
! OUTPUT PROGRAM INFOMATION
write(*,*)
write(*,*),' DSurfTomo (v1.3)'
write(*,*),'PLEASE contact Hongjain Fang &
(fanghj@mail.ustc.edu.cn) if you find any bug'
write(*,*) ' DSurfTomo (v1.4)'
!write(*,*) 'PLEASE contact Hongjain Fang &
! (fanghj@mail.ustc.edu.cn) if you find any bug'
write(*,*) 'For bug report, PLEASE contact Hongjain Fang &
(fanghj1990@gmail.com)'
write(*,*)
! READ INPUT FILE
@ -145,7 +135,7 @@ program SurfTomo
read(10,'(a30)')dummy
read(10,'(a30)')dummy
read(10,'(a30)')dummy
read(10,*)datafile
read(10,*) datafile
read(10,*) nx,ny,nz
read(10,*) goxd,gozd
read(10,*) dvxd,dvzd
@ -157,22 +147,22 @@ program SurfTomo
read(10,*) spfra
read(10,*) kmaxRc
write(*,*) 'model origin:latitude,longitue'
write(*,'(2f10.4)') goxd,gozd
write(*,'(2f10.5)') goxd,gozd
write(*,*) 'grid spacing:latitude,longitue'
write(*,'(2f10.4)') dvxd,dvzd
write(*,'(2f10.5)') dvxd,dvzd
write(*,*) 'model dimension:nx,ny,nz'
write(*,'(3i5)') nx,ny,nz
write(logfile,'(a,a)')trim(inputfile),'.log'
open(66,file=logfile)
write(66,*)
write(66,*),' S U R F T O M O'
write(66,*),'PLEASE contact Hongjain Fang &
write(66,*)' S U R F T O M O'
write(66,*)'PLEASE contact Hongjain Fang &
(fanghj@mail.ustc.edu.cn) if you find any bug'
write(66,*)
write(66,*) 'model origin:latitude,longitue'
write(66,'(2f10.4)') goxd,gozd
write(66,'(2f10.5)') goxd,gozd
write(66,*) 'grid spacing:latitude,longitue'
write(66,'(2f10.4)') dvxd,dvzd
write(66,'(2f10.5)') dvxd,dvzd
write(66,*) 'model dimension:nx,ny,nz'
write(66,'(3i5)') nx,ny,nz
if(kmaxRc.gt.0)then
@ -181,9 +171,9 @@ program SurfTomo
if (checkstat > 0) stop 'error allocating RP'
read(10,*)(tRc(i),i=1,kmaxRc)
write(*,*)'Rayleigh wave phase velocity used,periods:(s)'
write(*,'(50f7.1)')(tRc(i),i=1,kmaxRc)
write(*,'(50f7.2)')(tRc(i),i=1,kmaxRc)
write(66,*)'Rayleigh wave phase velocity used,periods:(s)'
write(66,'(50f7.1)')(tRc(i),i=1,kmaxRc)
write(66,'(50f7.2)')(tRc(i),i=1,kmaxRc)
endif
read(10,*)kmaxRg
if(kmaxRg.gt.0)then
@ -191,9 +181,9 @@ program SurfTomo
if (checkstat > 0) stop 'error allocating RP'
read(10,*)(tRg(i),i=1,kmaxRg)
write(*,*)'Rayleigh wave group velocity used,periods:(s)'
write(*,'(50f7.1)')(tRg(i),i=1,kmaxRg)
write(*,'(50f7.2)')(tRg(i),i=1,kmaxRg)
write(66,*)'Rayleigh wave group velocity used,periods:(s)'
write(66,'(50f7.1)')(tRg(i),i=1,kmaxRg)
write(66,'(50f7.2)')(tRg(i),i=1,kmaxRg)
endif
read(10,*)kmaxLc
if(kmaxLc.gt.0)then
@ -201,9 +191,9 @@ program SurfTomo
if (checkstat > 0) stop 'error allocating RP'
read(10,*)(tLc(i),i=1,kmaxLc)
write(*,*)'Love wave phase velocity used,periods:(s)'
write(*,'(50f7.1)')(tLc(i),i=1,kmaxLc)
write(*,'(50f7.2)')(tLc(i),i=1,kmaxLc)
write(66,*)'Love wave phase velocity used,periods:(s)'
write(66,'(50f7.1)')(tLc(i),i=1,kmaxLc)
write(66,'(50f7.2)')(tLc(i),i=1,kmaxLc)
endif
read(10,*)kmaxLg
if(kmaxLg.gt.0)then
@ -211,15 +201,14 @@ program SurfTomo
if (checkstat > 0) stop 'error allocating RP'
read(10,*)(tLg(i),i=1,kmaxLg)
write(*,*)'Love wave group velocity used,periods:(s)'
write(*,'(50f7.1)')(tLg(i),i=1,kmaxLg)
write(*,'(50f7.2)')(tLg(i),i=1,kmaxLg)
write(66,*)'Love wave group velocity used,periods:(s)'
write(66,'(50f7.1)')(tLg(i),i=1,kmaxLg)
write(66,'(50f7.2)')(tLg(i),i=1,kmaxLg)
endif
read(10,*)ifsyn
read(10,*)noiselevel
read(10,*) threshold0
! read(10,*) modest
! read(10,*) numrand
close(10)
nrc=nsrc
kmax=kmaxRc+kmaxRg+kmaxLc+kmaxLg
@ -296,15 +285,13 @@ program SurfTomo
close(87)
allocate(depz(nz), stat=checkstat)
maxnar = spfra*dall*nx*ny*nz!sparsity fraction
if (maxnar<0) print*, 'number overflow, decrease your sparsefrac'
maxvp = (nx-2)*(ny-2)*(nz-1)
allocate(dv(maxvp), stat=checkstat)
allocate(dv(maxvp),dvsub(maxvp),dvstd(maxvp),dvall(maxvp), stat=checkstat)
! allocate(dvall(maxvp*nrealizations),stats=checkstat)
allocate(norm(maxvp), stat=checkstat)
allocate(vsf(nx,ny,nz), stat=checkstat)
allocate(vsftrue(nx,ny,nz), stat=checkstat)
! FOR MODEL VARIATION
!------------------------------------------------
! allocate(modstat(numrand,maxvp))
! allocate(modsig(maxvp))
allocate(rw(maxnar), stat=checkstat)
if(checkstat > 0)then
@ -314,7 +301,7 @@ program SurfTomo
if(checkstat > 0)then
write(6,*)'error with allocate: integer iw'
endif
allocate(col(maxnar), stat=checkstat)
allocate(col(maxnar),nrow(dall), stat=checkstat)
if(checkstat > 0)then
write(6,*)'error with allocate: integer iw'
endif
@ -322,7 +309,7 @@ program SurfTomo
stat=checkstat)
! MEASUREMENTS STATISTICS AND READ INITIAL MODEL
write(*,'(a,i7)') 'Number of all measurements',dall
write(*,'(a,i7)') ' Number of all measurements',dall
open(10,file='MOD',status='old')
read(10,*) (depz(i),i=1,nz)
@ -333,13 +320,11 @@ program SurfTomo
enddo
close(10)
write(*,*) 'grid points in depth direction:(km)'
write(*,'(50f7.1)') depz
write(*,'(50f7.2)') depz
! CHECKERBOARD TEST
if (ifsyn == 1) then
write(*,*) 'Checkerboard Resolution Test Begin'
write(*,*) 'Synthetic Test Begin'
vsftrue = vsf
open(11,file='MOD.true',status='old')
@ -360,60 +345,35 @@ program SurfTomo
! ITERATE UNTILL CONVERGE
writepath = 0
do iter = 1,maxiter
iw = 0
rw = 0.0
col = 0
! COMPUTE SENSITIVITY MATRIX
if (iter == maxiter) then
writepath = 1
open(40,file='raypath.out')
endif
write(*,*) 'computing sensitivity matrix...'
call CalSurfG(nx,ny,nz,maxvp,vsf,iw,rw,col,dsyn,&
goxd,gozd,dvxd,dvzd,kmaxRc,kmaxRg,kmaxLc,kmaxLg,&
tRc,tRg,tLc,tLg,wavetype,igrt,periods,depz,minthk,&
scxf,sczf,rcxf,rczf,nrc1,nsrc1,kmax,&
nsrc,nrc,nar,writepath)
nsrc,nrc,nar)
do i = 1,dall
cbst(i) = obst(i) - dsyn(i)
enddo
! write out rw, iw and cbst for testing
!open(44,file='iw.dat')
!write(44,*) nar
!do i = 2,nar+1
!write(44,*) iw(i)
!enddo
!do i = 1,nar
!write(44,*) col(i)
!enddo
!close(44)
!open(44,file='rw.dat')
!do i = 1,nar
!write(44,*) rw(i)
!enddo
!close(44)
!open(44,file='residal.dat')
!do i = 1,dall
!write(44,*) cbst(i)
!enddo
!close(44)
!threshold = threshold0+(maxiter/2-iter)/3*0.5
call getpercentile(dall,cbst,q25,q75)
datweight = 1.0
do i = 1,dall
! datweight(i) = 1.0
! if(abs(cbst(i)) > threshold) then
! datweight(i) = exp(-(abs(cbst(i))-threshold))
! endif
datweight(i) = 0.01+1.0/(1+0.05*exp(cbst(i)**2*threshold0))
cbst(i) = cbst(i)*datweight(i)
if (cbst(i)<q25*threshold0 .or. cbst(i)>q75*threshold0) then
datweight(i) = 0.0
cbst(i) = 0
endif
enddo
! do i = 1,dall
! datweight(i) = 0.01+1.0/(1+0.05*exp(cbst(i)**2*threshold0))
! cbst(i) = cbst(i)*datweight(i)
! enddo
do i = 1,nar
rw(i) = rw(i)*datweight(iw(1+i))
@ -431,7 +391,6 @@ program SurfTomo
enddo
averdws=averdws/maxvp
write(66,*)'Maximum and Average DWS values:',maxnorm,averdws
write(66,*)'Threshold is:',threshold
! WRITE OUT RESIDUAL FOR THE FIRST AND LAST ITERATION
if(iter.eq.1) then
@ -452,8 +411,6 @@ program SurfTomo
endif
! ADDING REGULARIZATION TERM
!weight=dnrm2(dall,cbst,1)**2/dall*weight0
weight=weight0
nar_tmp=nar
nars=0
@ -514,10 +471,12 @@ program SurfTomo
leniw = 2*nar+1
lenrw = nar
dv = 0
atol = 1e-3
btol = 1e-3
conlim = 1200
itnlim = 1000
atol = 1e-6
btol = 1e-6
!atol = 1e-3/((dvxd+dvzd)*111.19/2.0*0.1) !1e-2
!btol = 1e-3/(dvxd*nx*111.19/3.0)!1e-3
conlim = 100
itnlim = 400
istop = 0
anorm = 0.0
acond = 0.0
@ -528,29 +487,32 @@ program SurfTomo
call LSMR(m, n, leniw, lenrw,iw,rw,cbst, damp,&
atol, btol, conlim, itnlim, localSize, nout,&
dv, istop, itn, anorm, acond, rnorm, arnorm, xnorm)
if(istop==3) print*,'istop = 3, large condition number'
do i =1,dall
cbst(i)=cbst(i)/datweight(i)
enddo
mean = sum(cbst(1:dall))/dall
std_devs = sqrt(sum(cbst(1:dall)**2)/dall - mean**2)
write(*,'(i2,a)'),iter,'th iteration...'
write(*,'(a,f7.3)'),'weight is:',weight
write(*,'(a,f8.1,a,f8.2,a,f8.3)'),'mean,std_devs and rms of &
residual: ',mean*1000,'ms ',1000*std_devs,'ms ',&
write(*,'(i2,a)')iter,'th iteration...'
! write(*,'(a,f7.3)')'weight is:',weight
write(*,'(a,f8.1,a,f8.2,a,f8.3)')' mean,std_devs and rms of &
residual after weighting: ',mean*1000,'ms ',1000*std_devs,'ms ',&
dnrm2(dall,cbst,1)/sqrt(real(dall))
write(66,'(i2,a)'),iter,'th iteration...'
write(66,'(a,f7.3)'),'weight is:',weight
write(66,'(a,f8.1,a,f8.2,a,f8.3)'),'mean,std_devs and rms of &
!do i =1,dall
!cbst(i)=cbst(i)/datweight(i)
!enddo
!mean = sum(cbst(1:dall))/dall
!std_devs = sqrt(sum(cbst(1:dall)**2)/dall - mean**2)
!write(*,'(a,f8.1,a,f8.2,a,f8.3)')' residual before weighting: ',mean*1000,'ms ',1000*std_devs,'ms ',&
! dnrm2(dall,cbst,1)/sqrt(real(dall))
write(66,'(i2,a)')iter,'th iteration...'
! write(66,'(a,f7.3)')'weight is:',weight
write(66,'(a,f8.1,a,f8.2,a,f8.3)')'mean,std_devs and rms of &
residual: ',mean*1000,'ms ',1000*std_devs,'ms ',&
dnrm2(dall,cbst,1)/sqrt(real(dall))
write(*,'(a,2f7.4)'),'min and max velocity variation ',&
write(*,'(a,2f7.4)')' min and max velocity variation ',&
minval(dv),maxval(dv)
write(66,'(a,2f7.4)'),'min and max velocity variation ',&
write(66,'(a,2f7.4)')'min and max velocity variation ',&
minval(dv),maxval(dv)
do k=1,nz-1
@ -568,25 +530,13 @@ program SurfTomo
enddo
enddo
enddo
write(34,*)'OUTPUT S VELOCITY AT ITERATION',iter
do k=1,nz
do j=1,ny
write(34,'(100f7.3)') (vsf(i,j,k),i=1,nx)
enddo
enddo
write(34,*)',OUTPUT DWS AT ITERATION',iter
do k=1,nz-1
do j=2,ny-1
write(34,'(100f8.1)') (norm((k-1)*(ny-2)*(nx-2)+(j-2)*(nx-2)+i-1),i=2,nx-1)
enddo
enddo
write(outmodel,'(a,a,i3.3)') trim(inputfile),'Measure.dat.iter',iter
open(64,file=outmodel)
do k=1,nz-1
do j=1,ny-2
do i=1,nx-2
write(64,'(5f9.3)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsf(i+1,j+1,k)
write(64,'(5f10.5)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsf(i+1,j+1,k)
enddo
enddo
enddo
@ -597,8 +547,8 @@ program SurfTomo
! OUTPUT THE VELOCITY MODEL
write(*,*),'Program finishes successfully'
write(66,*),'Program finishes successfully'
write(*,*)'Program finishes successfully'
write(66,*)'Program finishes successfully'
if(ifsyn == 1) then
open(65,file='Vs_model.real')
@ -607,20 +557,20 @@ program SurfTomo
do k=1,nz-1
do j=1,ny-2
do i=1,nx-2
write(65,'(5f9.3)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsftrue(i+1,j+1,k)
write(63,'(5f9.3)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsf(i+1,j+1,k)
write(65,'(5f10.5)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsftrue(i+1,j+1,k)
write(63,'(5f10.5)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsf(i+1,j+1,k)
enddo
enddo
enddo
close(65)
close(63)
write(*,*),'Output True velocity model &
write(*,*)'Output True velocity model &
to Vs_model.real'
write(*,*),'Output inverted shear velocity model &
write(*,*)'Output inverted shear velocity model &
to ',outsyn
write(66,*),'Output True velocity model &
write(66,*)'Output True velocity model &
to Vs_model.real'
write(66,*),'Output inverted shear velocity model &
write(66,*)'Output inverted shear velocity model &
to ',outsyn
else
write(outmodel,'(a,a)') trim(inputfile),'Measure.dat'
@ -628,88 +578,22 @@ program SurfTomo
do k=1,nz-1
do j=1,ny-2
do i=1,nx-2
write(64,'(5f9.3)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsf(i+1,j+1,k)
write(64,'(5f10.5)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),vsf(i+1,j+1,k)
enddo
enddo
enddo
close(64)
write(*,*),'Output inverted shear velocity model &
write(*,*)'Output inverted shear velocity model &
to ',outmodel
write(66,*),'Output inverted shear velocity model &
write(66,*)'Output inverted shear velocity model &
to ',outmodel
endif
close(34)
close(40)
close(nout) !close lsmr.txt
!close(40)
!close(nout) !close lsmr.txt
close(66) !close surf_tomo.log
!! USE RANDOM MODEL TO OBTAIN THE MODEL VARIATION
! !modest = 1
! if (modest ==1) then
!
! write(*,*) 'model variation estimation begin...'
! do iter = 1,numrand
! call init_random_seed()
! vsftrue=vsf
! DO K=1,NZ-1
! DO J=2,NY-1
! DO I=2,NX-1
! idx = (k-1)*(ny-2)*(nx-2)+(j-2)*(nx-2)+i-1
! dv(idx) = 0.1/EXP(2*NORM(idx)/maxnorm)*gaussian()
! VSFTRUE(I,J,K) = VSF(I,J,K)+dv(idx)
! ENDDO
! ENDDO
! ENDDO
! write(*,*),'maximum and minimum velocity variation',maxval(dv),minval(dv)
!
! call synthetic(nx,ny,nz,maxvp,vsftrue,dsyn,&
! goxd,gozd,dvxd,dvzd,kmaxRc,kmaxRg,kmaxLc,kmaxLg,&
! tRc,tRg,tLc,tLg,wavetype,igrt,periods,depz,minthk,&
! scxf,sczf,rcxf,rczf,nrc1,nsrc1,kmax,&
! nsrc,nrc,0.0)
!
! do i = 1,dall
! cbst(i) = obst(i) - dsyn(i)
! enddo
!
! write(*,*), dnrm2(dall,cbst,1)/sqrt(real(dall)), 1.05*std_devs
! if (dnrm2(dall,cbst,1)/sqrt(real(dall)) < 1.05*std_devs) then
! counte = counte + 1
! modstat(counte,:) = dv
! endif
!
! enddo ! iteration for random models
!
! write(*,*),'number of of models satisfy requirements',counte
! modsig = 1.0
! if (counte>0) then
! do i=1,maxvp
! !statis
! !mean = sum(cbst(1:dall))/dall
! !std_devs = sqrt(sum(cbst(1:dall)**2)/dall - mean**2)
! mean = sum(modstat(1:counte,i))/counte
! stdvs = sqrt(sum(modstat(1:counte,i)**2)/counte-mean**2)
! modsig(i) = stdvs
! enddo
! endif
!
! write(*,*),'write model variation to "model_variation.dat"'
! open (64,file='model_variation.dat')
! do k=1,nz-1
! do j=1,ny-2
! do i=1,nx-2
! idx = (k-1)*(ny-2)*(nx-2)+(j-1)*(nx-2)+i
! write(64,'(5f8.4)') gozd+(j-1)*dvzd,goxd-(i-1)*dvxd,depz(k),modsig(idx)
! enddo
! enddo
! enddo
! close(64)
! write(*,*) 'finishing model variation estimation'
! endif
deallocate(obst)
deallocate(dsyn)
deallocate(dist)
@ -719,9 +603,9 @@ program SurfTomo
deallocate(wavetype,igrt,nrc1)
deallocate(nsrc1,periods)
deallocate(rw)
deallocate(iw,col)
deallocate(iw,col,nrow)
deallocate(cbst,wt,dtres,datweight)
deallocate(dv)
deallocate(dv,dvsub,dvstd,dvall)
deallocate(norm)
deallocate(vsf)
deallocate(vsftrue)
@ -740,19 +624,3 @@ program SurfTomo
end program
!-----------------------------------------------------------------------
! Generate seed for random number generator of fortran
! Note: only need to be called once inside one program
!-----------------------------------------------------------------------
subroutine init_random_seed()
integer :: i,n,clock
integer,dimension(:),allocatable :: seed
call random_seed(size=n)
allocate(seed(n))
call system_clock(count=clock)
seed=clock+37*(/(i-1,i=1,n)/)
call random_seed(PUT=seed)
deallocate(seed)
end subroutine

178
src/slarnv.f Normal file
View File

@ -0,0 +1,178 @@
*> \brief \b SLARNV returns a vector of random numbers from a uniform or normal distribution.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARNV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarnv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarnv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarnv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLARNV( IDIST, ISEED, N, X )
*
* .. Scalar Arguments ..
* INTEGER IDIST, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARNV returns a vector of n random real numbers from a uniform or
*> normal distribution.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IDIST
*> \verbatim
*> IDIST is INTEGER
*> Specifies the distribution of the random numbers:
*> = 1: uniform (0,1)
*> = 2: uniform (-1,1)
*> = 3: normal (0,1)
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of random numbers to be generated.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is REAL array, dimension (N)
*> The generated random numbers.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> This routine calls the auxiliary routine SLARUV to generate random
*> real numbers from a uniform (0,1) distribution, in batches of up to
*> 128 using vectorisable code. The Box-Muller method is used to
*> transform numbers from a uniform to a normal distribution.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLARNV( IDIST, ISEED, N, X )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER IDIST, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, TWO
PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0 )
INTEGER LV
PARAMETER ( LV = 128 )
REAL TWOPI
PARAMETER ( TWOPI = 6.2831853071795864769252867663E+0 )
* ..
* .. Local Scalars ..
INTEGER I, IL, IL2, IV
* ..
* .. Local Arrays ..
REAL U( LV )
* ..
* .. Intrinsic Functions ..
INTRINSIC COS, LOG, MIN, SQRT
* ..
* .. External Subroutines ..
EXTERNAL SLARUV
* ..
* .. Executable Statements ..
*
DO 40 IV = 1, N, LV / 2
IL = MIN( LV / 2, N-IV+1 )
IF( IDIST.EQ.3 ) THEN
IL2 = 2*IL
ELSE
IL2 = IL
END IF
*
* Call SLARUV to generate IL2 numbers from a uniform (0,1)
* distribution (IL2 <= LV)
*
CALL SLARUV( ISEED, IL2, U )
*
IF( IDIST.EQ.1 ) THEN
*
* Copy generated numbers
*
DO 10 I = 1, IL
X( IV+I-1 ) = U( I )
10 CONTINUE
ELSE IF( IDIST.EQ.2 ) THEN
*
* Convert generated numbers to uniform (-1,1) distribution
*
DO 20 I = 1, IL
X( IV+I-1 ) = TWO*U( I ) - ONE
20 CONTINUE
ELSE IF( IDIST.EQ.3 ) THEN
*
* Convert generated numbers to normal (0,1) distribution
*
DO 30 I = 1, IL
X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )*
$ COS( TWOPI*U( 2*I ) )
30 CONTINUE
END IF
40 CONTINUE
RETURN
*
* End of SLARNV
*
END

447
src/slaruv.f Normal file
View File

@ -0,0 +1,447 @@
*> \brief \b SLARUV returns a vector of n random real numbers from a uniform distribution.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARUV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaruv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaruv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaruv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLARUV( ISEED, N, X )
*
* .. Scalar Arguments ..
* INTEGER N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL X( N )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARUV returns a vector of n random real numbers from a uniform (0,1)
*> distribution (n <= 128).
*>
*> This is an auxiliary routine called by SLARNV and CLARNV.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of random numbers to be generated. N <= 128.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is REAL array, dimension (N)
*> The generated random numbers.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> This routine uses a multiplicative congruential method with modulus
*> 2**48 and multiplier 33952834046453 (see G.S.Fishman,
*> 'Multiplicative congruential random number generators with modulus
*> 2**b: an exhaustive analysis for b = 32 and a partial analysis for
*> b = 48', Math. Comp. 189, pp 331-344, 1990).
*>
*> 48-bit integers are stored in 4 integer array elements with 12 bits
*> per element. Hence the routine is portable across machines with
*> integers of 32 bits or more.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLARUV( ISEED, N, X )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL X( N )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E0 )
INTEGER LV, IPW2
REAL R
PARAMETER ( LV = 128, IPW2 = 4096, R = ONE / IPW2 )
* ..
* .. Local Scalars ..
INTEGER I, I1, I2, I3, I4, IT1, IT2, IT3, IT4, J
* ..
* .. Local Arrays ..
INTEGER MM( LV, 4 )
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MOD, REAL
* ..
* .. Data statements ..
DATA ( MM( 1, J ), J = 1, 4 ) / 494, 322, 2508,
$ 2549 /
DATA ( MM( 2, J ), J = 1, 4 ) / 2637, 789, 3754,
$ 1145 /
DATA ( MM( 3, J ), J = 1, 4 ) / 255, 1440, 1766,
$ 2253 /
DATA ( MM( 4, J ), J = 1, 4 ) / 2008, 752, 3572,
$ 305 /
DATA ( MM( 5, J ), J = 1, 4 ) / 1253, 2859, 2893,
$ 3301 /
DATA ( MM( 6, J ), J = 1, 4 ) / 3344, 123, 307,
$ 1065 /
DATA ( MM( 7, J ), J = 1, 4 ) / 4084, 1848, 1297,
$ 3133 /
DATA ( MM( 8, J ), J = 1, 4 ) / 1739, 643, 3966,
$ 2913 /
DATA ( MM( 9, J ), J = 1, 4 ) / 3143, 2405, 758,
$ 3285 /
DATA ( MM( 10, J ), J = 1, 4 ) / 3468, 2638, 2598,
$ 1241 /
DATA ( MM( 11, J ), J = 1, 4 ) / 688, 2344, 3406,
$ 1197 /
DATA ( MM( 12, J ), J = 1, 4 ) / 1657, 46, 2922,
$ 3729 /
DATA ( MM( 13, J ), J = 1, 4 ) / 1238, 3814, 1038,
$ 2501 /
DATA ( MM( 14, J ), J = 1, 4 ) / 3166, 913, 2934,
$ 1673 /
DATA ( MM( 15, J ), J = 1, 4 ) / 1292, 3649, 2091,
$ 541 /
DATA ( MM( 16, J ), J = 1, 4 ) / 3422, 339, 2451,
$ 2753 /
DATA ( MM( 17, J ), J = 1, 4 ) / 1270, 3808, 1580,
$ 949 /
DATA ( MM( 18, J ), J = 1, 4 ) / 2016, 822, 1958,
$ 2361 /
DATA ( MM( 19, J ), J = 1, 4 ) / 154, 2832, 2055,
$ 1165 /
DATA ( MM( 20, J ), J = 1, 4 ) / 2862, 3078, 1507,
$ 4081 /
DATA ( MM( 21, J ), J = 1, 4 ) / 697, 3633, 1078,
$ 2725 /
DATA ( MM( 22, J ), J = 1, 4 ) / 1706, 2970, 3273,
$ 3305 /
DATA ( MM( 23, J ), J = 1, 4 ) / 491, 637, 17,
$ 3069 /
DATA ( MM( 24, J ), J = 1, 4 ) / 931, 2249, 854,
$ 3617 /
DATA ( MM( 25, J ), J = 1, 4 ) / 1444, 2081, 2916,
$ 3733 /
DATA ( MM( 26, J ), J = 1, 4 ) / 444, 4019, 3971,
$ 409 /
DATA ( MM( 27, J ), J = 1, 4 ) / 3577, 1478, 2889,
$ 2157 /
DATA ( MM( 28, J ), J = 1, 4 ) / 3944, 242, 3831,
$ 1361 /
DATA ( MM( 29, J ), J = 1, 4 ) / 2184, 481, 2621,
$ 3973 /
DATA ( MM( 30, J ), J = 1, 4 ) / 1661, 2075, 1541,
$ 1865 /
DATA ( MM( 31, J ), J = 1, 4 ) / 3482, 4058, 893,
$ 2525 /
DATA ( MM( 32, J ), J = 1, 4 ) / 657, 622, 736,
$ 1409 /
DATA ( MM( 33, J ), J = 1, 4 ) / 3023, 3376, 3992,
$ 3445 /
DATA ( MM( 34, J ), J = 1, 4 ) / 3618, 812, 787,
$ 3577 /
DATA ( MM( 35, J ), J = 1, 4 ) / 1267, 234, 2125,
$ 77 /
DATA ( MM( 36, J ), J = 1, 4 ) / 1828, 641, 2364,
$ 3761 /
DATA ( MM( 37, J ), J = 1, 4 ) / 164, 4005, 2460,
$ 2149 /
DATA ( MM( 38, J ), J = 1, 4 ) / 3798, 1122, 257,
$ 1449 /
DATA ( MM( 39, J ), J = 1, 4 ) / 3087, 3135, 1574,
$ 3005 /
DATA ( MM( 40, J ), J = 1, 4 ) / 2400, 2640, 3912,
$ 225 /
DATA ( MM( 41, J ), J = 1, 4 ) / 2870, 2302, 1216,
$ 85 /
DATA ( MM( 42, J ), J = 1, 4 ) / 3876, 40, 3248,
$ 3673 /
DATA ( MM( 43, J ), J = 1, 4 ) / 1905, 1832, 3401,
$ 3117 /
DATA ( MM( 44, J ), J = 1, 4 ) / 1593, 2247, 2124,
$ 3089 /
DATA ( MM( 45, J ), J = 1, 4 ) / 1797, 2034, 2762,
$ 1349 /
DATA ( MM( 46, J ), J = 1, 4 ) / 1234, 2637, 149,
$ 2057 /
DATA ( MM( 47, J ), J = 1, 4 ) / 3460, 1287, 2245,
$ 413 /
DATA ( MM( 48, J ), J = 1, 4 ) / 328, 1691, 166,
$ 65 /
DATA ( MM( 49, J ), J = 1, 4 ) / 2861, 496, 466,
$ 1845 /
DATA ( MM( 50, J ), J = 1, 4 ) / 1950, 1597, 4018,
$ 697 /
DATA ( MM( 51, J ), J = 1, 4 ) / 617, 2394, 1399,
$ 3085 /
DATA ( MM( 52, J ), J = 1, 4 ) / 2070, 2584, 190,
$ 3441 /
DATA ( MM( 53, J ), J = 1, 4 ) / 3331, 1843, 2879,
$ 1573 /
DATA ( MM( 54, J ), J = 1, 4 ) / 769, 336, 153,
$ 3689 /
DATA ( MM( 55, J ), J = 1, 4 ) / 1558, 1472, 2320,
$ 2941 /
DATA ( MM( 56, J ), J = 1, 4 ) / 2412, 2407, 18,
$ 929 /
DATA ( MM( 57, J ), J = 1, 4 ) / 2800, 433, 712,
$ 533 /
DATA ( MM( 58, J ), J = 1, 4 ) / 189, 2096, 2159,
$ 2841 /
DATA ( MM( 59, J ), J = 1, 4 ) / 287, 1761, 2318,
$ 4077 /
DATA ( MM( 60, J ), J = 1, 4 ) / 2045, 2810, 2091,
$ 721 /
DATA ( MM( 61, J ), J = 1, 4 ) / 1227, 566, 3443,
$ 2821 /
DATA ( MM( 62, J ), J = 1, 4 ) / 2838, 442, 1510,
$ 2249 /
DATA ( MM( 63, J ), J = 1, 4 ) / 209, 41, 449,
$ 2397 /
DATA ( MM( 64, J ), J = 1, 4 ) / 2770, 1238, 1956,
$ 2817 /
DATA ( MM( 65, J ), J = 1, 4 ) / 3654, 1086, 2201,
$ 245 /
DATA ( MM( 66, J ), J = 1, 4 ) / 3993, 603, 3137,
$ 1913 /
DATA ( MM( 67, J ), J = 1, 4 ) / 192, 840, 3399,
$ 1997 /
DATA ( MM( 68, J ), J = 1, 4 ) / 2253, 3168, 1321,
$ 3121 /
DATA ( MM( 69, J ), J = 1, 4 ) / 3491, 1499, 2271,
$ 997 /
DATA ( MM( 70, J ), J = 1, 4 ) / 2889, 1084, 3667,
$ 1833 /
DATA ( MM( 71, J ), J = 1, 4 ) / 2857, 3438, 2703,
$ 2877 /
DATA ( MM( 72, J ), J = 1, 4 ) / 2094, 2408, 629,
$ 1633 /
DATA ( MM( 73, J ), J = 1, 4 ) / 1818, 1589, 2365,
$ 981 /
DATA ( MM( 74, J ), J = 1, 4 ) / 688, 2391, 2431,
$ 2009 /
DATA ( MM( 75, J ), J = 1, 4 ) / 1407, 288, 1113,
$ 941 /
DATA ( MM( 76, J ), J = 1, 4 ) / 634, 26, 3922,
$ 2449 /
DATA ( MM( 77, J ), J = 1, 4 ) / 3231, 512, 2554,
$ 197 /
DATA ( MM( 78, J ), J = 1, 4 ) / 815, 1456, 184,
$ 2441 /
DATA ( MM( 79, J ), J = 1, 4 ) / 3524, 171, 2099,
$ 285 /
DATA ( MM( 80, J ), J = 1, 4 ) / 1914, 1677, 3228,
$ 1473 /
DATA ( MM( 81, J ), J = 1, 4 ) / 516, 2657, 4012,
$ 2741 /
DATA ( MM( 82, J ), J = 1, 4 ) / 164, 2270, 1921,
$ 3129 /
DATA ( MM( 83, J ), J = 1, 4 ) / 303, 2587, 3452,
$ 909 /
DATA ( MM( 84, J ), J = 1, 4 ) / 2144, 2961, 3901,
$ 2801 /
DATA ( MM( 85, J ), J = 1, 4 ) / 3480, 1970, 572,
$ 421 /
DATA ( MM( 86, J ), J = 1, 4 ) / 119, 1817, 3309,
$ 4073 /
DATA ( MM( 87, J ), J = 1, 4 ) / 3357, 676, 3171,
$ 2813 /
DATA ( MM( 88, J ), J = 1, 4 ) / 837, 1410, 817,
$ 2337 /
DATA ( MM( 89, J ), J = 1, 4 ) / 2826, 3723, 3039,
$ 1429 /
DATA ( MM( 90, J ), J = 1, 4 ) / 2332, 2803, 1696,
$ 1177 /
DATA ( MM( 91, J ), J = 1, 4 ) / 2089, 3185, 1256,
$ 1901 /
DATA ( MM( 92, J ), J = 1, 4 ) / 3780, 184, 3715,
$ 81 /
DATA ( MM( 93, J ), J = 1, 4 ) / 1700, 663, 2077,
$ 1669 /
DATA ( MM( 94, J ), J = 1, 4 ) / 3712, 499, 3019,
$ 2633 /
DATA ( MM( 95, J ), J = 1, 4 ) / 150, 3784, 1497,
$ 2269 /
DATA ( MM( 96, J ), J = 1, 4 ) / 2000, 1631, 1101,
$ 129 /
DATA ( MM( 97, J ), J = 1, 4 ) / 3375, 1925, 717,
$ 1141 /
DATA ( MM( 98, J ), J = 1, 4 ) / 1621, 3912, 51,
$ 249 /
DATA ( MM( 99, J ), J = 1, 4 ) / 3090, 1398, 981,
$ 3917 /
DATA ( MM( 100, J ), J = 1, 4 ) / 3765, 1349, 1978,
$ 2481 /
DATA ( MM( 101, J ), J = 1, 4 ) / 1149, 1441, 1813,
$ 3941 /
DATA ( MM( 102, J ), J = 1, 4 ) / 3146, 2224, 3881,
$ 2217 /
DATA ( MM( 103, J ), J = 1, 4 ) / 33, 2411, 76,
$ 2749 /
DATA ( MM( 104, J ), J = 1, 4 ) / 3082, 1907, 3846,
$ 3041 /
DATA ( MM( 105, J ), J = 1, 4 ) / 2741, 3192, 3694,
$ 1877 /
DATA ( MM( 106, J ), J = 1, 4 ) / 359, 2786, 1682,
$ 345 /
DATA ( MM( 107, J ), J = 1, 4 ) / 3316, 382, 124,
$ 2861 /
DATA ( MM( 108, J ), J = 1, 4 ) / 1749, 37, 1660,
$ 1809 /
DATA ( MM( 109, J ), J = 1, 4 ) / 185, 759, 3997,
$ 3141 /
DATA ( MM( 110, J ), J = 1, 4 ) / 2784, 2948, 479,
$ 2825 /
DATA ( MM( 111, J ), J = 1, 4 ) / 2202, 1862, 1141,
$ 157 /
DATA ( MM( 112, J ), J = 1, 4 ) / 2199, 3802, 886,
$ 2881 /
DATA ( MM( 113, J ), J = 1, 4 ) / 1364, 2423, 3514,
$ 3637 /
DATA ( MM( 114, J ), J = 1, 4 ) / 1244, 2051, 1301,
$ 1465 /
DATA ( MM( 115, J ), J = 1, 4 ) / 2020, 2295, 3604,
$ 2829 /
DATA ( MM( 116, J ), J = 1, 4 ) / 3160, 1332, 1888,
$ 2161 /
DATA ( MM( 117, J ), J = 1, 4 ) / 2785, 1832, 1836,
$ 3365 /
DATA ( MM( 118, J ), J = 1, 4 ) / 2772, 2405, 1990,
$ 361 /
DATA ( MM( 119, J ), J = 1, 4 ) / 1217, 3638, 2058,
$ 2685 /
DATA ( MM( 120, J ), J = 1, 4 ) / 1822, 3661, 692,
$ 3745 /
DATA ( MM( 121, J ), J = 1, 4 ) / 1245, 327, 1194,
$ 2325 /
DATA ( MM( 122, J ), J = 1, 4 ) / 2252, 3660, 20,
$ 3609 /
DATA ( MM( 123, J ), J = 1, 4 ) / 3904, 716, 3285,
$ 3821 /
DATA ( MM( 124, J ), J = 1, 4 ) / 2774, 1842, 2046,
$ 3537 /
DATA ( MM( 125, J ), J = 1, 4 ) / 997, 3987, 2107,
$ 517 /
DATA ( MM( 126, J ), J = 1, 4 ) / 2573, 1368, 3508,
$ 3017 /
DATA ( MM( 127, J ), J = 1, 4 ) / 1148, 1848, 3525,
$ 2141 /
DATA ( MM( 128, J ), J = 1, 4 ) / 545, 2366, 3801,
$ 1537 /
* ..
* .. Executable Statements ..
*
I1 = ISEED( 1 )
I2 = ISEED( 2 )
I3 = ISEED( 3 )
I4 = ISEED( 4 )
*
DO 10 I = 1, MIN( N, LV )
*
20 CONTINUE
*
* Multiply the seed by i-th power of the multiplier modulo 2**48
*
IT4 = I4*MM( I, 4 )
IT3 = IT4 / IPW2
IT4 = IT4 - IPW2*IT3
IT3 = IT3 + I3*MM( I, 4 ) + I4*MM( I, 3 )
IT2 = IT3 / IPW2
IT3 = IT3 - IPW2*IT2
IT2 = IT2 + I2*MM( I, 4 ) + I3*MM( I, 3 ) + I4*MM( I, 2 )
IT1 = IT2 / IPW2
IT2 = IT2 - IPW2*IT1
IT1 = IT1 + I1*MM( I, 4 ) + I2*MM( I, 3 ) + I3*MM( I, 2 ) +
$ I4*MM( I, 1 )
IT1 = MOD( IT1, IPW2 )
*
* Convert 48-bit integer to a real number in the interval (0,1)
*
X( I ) = R*( REAL( IT1 )+R*( REAL( IT2 )+R*( REAL( IT3 )+R*
$ REAL( IT4 ) ) ) )
*
IF (X( I ).EQ.1.0) THEN
* If a real number has n bits of precision, and the first
* n bits of the 48-bit integer above happen to be all 1 (which
* will occur about once every 2**n calls), then X( I ) will
* be rounded to exactly 1.0. In IEEE single precision arithmetic,
* this will happen relatively often since n = 24.
* Since X( I ) is not supposed to return exactly 0.0 or 1.0,
* the statistically correct thing to do in this situation is
* simply to iterate again.
* N.B. the case X( I ) = 0.0 should not be possible.
I1 = I1 + 2
I2 = I2 + 2
I3 = I3 + 2
I4 = I4 + 2
GOTO 20
END IF
*
10 CONTINUE
*
* Return final value of seed
*
ISEED( 1 ) = IT1
ISEED( 2 ) = IT2
ISEED( 3 ) = IT3
ISEED( 4 ) = IT4
RETURN
*
* End of SLARUV
*
END

View File

@ -308,7 +308,7 @@ c ----- print *, itst,iq,t(k),t1a,t1b,cc0,cc1,gvel
if(iverb(ifunc).eq.0)then
iverb(ifunc) = 1
write(LOT,*)'improper initial value in disper - no zero found'
write(*,*)'WARNING:improper initial value in disper - no zero found'
!write(*,*)'WARNING:improper initial value in disper - no zero found'
write(LOT,*)'in fundamental mode '
write(LOT,*)'This may be due to low velocity zone '
write(LOT,*)'causing reverse phase velocity dispersion, '