Compare commits

..

3 Commits
v1.4 ... stable

Author SHA1 Message Date
Hongjian Fang
a651faf927 correcting the readme 2023-09-30 15:09:01 +08:00
Hongjian Fang
ad99372e34 Change the empirical relationship when inverting for upper mantle 2023-09-29 15:08:18 +08:00
Hongjian Fang
37eb3e8f4b add python script for generating both the data and the input file for DSurfTomo 2023-07-31 09:19:29 +08:00
5 changed files with 173 additions and 2520 deletions

2
.gitignore vendored
View File

@ -4,4 +4,4 @@ Applications
example_*
.gitignore
temp
DSurfTomo

View File

@ -1,11 +1,8 @@
DSurfTomo is a surface wave inversion program which can irectly invert surface wave dispersion data directly to 3D shear wavespeed models, without the intermediate step of constructing the phase or group velocity maps.
DSurfTomo is a surface wave tomography program which inverts surface wave dispersion data directly to 3D shear wavespeed models without the intermediate step of constructing the phase or group velocity maps.
The fast marching method (FMM) (Rawlinson et al., 2004) is used to compute, at each period, surface wave travel times and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media.
Please refer to Fang et al. (2015 , GJI) for the detail description of the method.
To show its usage, an example of Taipei Basin tomography is provided, including scripts that are used for data reformating and plotting results. Interested users are recommended to refer to Fang et al. (2015 , GJI) for the detail description of the method.
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3), 1251-1263.
Rawlinson, N. & Sambridge, M., 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method, Geophys. J. Int., 156(3), 631647
For V2.0, I incorporated the random projections based inversion using Poisson Voronoi cells. However, it has not been fully tested, so any feedbacks will be helpful. For more information about the inversion method, please refer to:
Fang, H., van der Hilst, R. D., de Hoop, M. V., Kothari, K., Gupta, S., & Dokmanić, I. (2020). Parsimonious Seismic Tomography with Poisson Voronoi Projections: Methodology and Validation. Seismological Research Letters, 91(1), 343-355.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,146 @@
#/* -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
#
# File Name : GenerateDSurfTomoInputFile.py
#
# Purpose : Generate the Input File for DSurfTomo using the data themselves
#
# Creation Date : 05-07-2023
#
# Last Modified : Tue 18 Jul 2023 08:10:22 PM CST
#
# Created By : Hongjian Fang: fanghj1990@gmail.com
#
#_._._._._._._._._._._._._._._._._._._._._.*/
import os
import numpy as np
import glob
import pandas as pd
#These are for generating the right format
DataPath = 'TaipeiRawData'
DataNames = 'CDisp*.dat'
wavetype = 2
phasetype = 0
# These following can be changed in DSurfTomo.in
nz = 9
sublayers = 3
minvel = 0.5
maxvel = 2.8
noiselevel = 0.02
datathreshold = 1.5
DataFiles = glob.glob(DataPath+'/'+DataNames)
sta1latall = []
sta1lonall = []
sta2latall = []
sta2lonall = []
periodsall = []
dispersionall = []
stationpairID = []
for ifile in DataFiles:
dispersion = np.loadtxt(ifile)
pairID = ifile.split('/')[-1]
sta1lon = dispersion[0,0]
sta1lat = dispersion[0,1]
sta2lon = dispersion[1,0]
sta2lat = dispersion[1,1]
nperiods,_ = dispersion.shape
nperiods = nperiods - 2
periods = np.zeros(nperiods,)
disper = np.zeros(nperiods,)
for ii in range(nperiods):
periods[ii] = dispersion[ii+2,0]
disper[ii] = dispersion[ii+2,1]
dispersionall = np.hstack([dispersionall,disper])
periodsall = np.hstack([periodsall,periods])
sta1latall = np.hstack([sta1latall,np.ones(nperiods,)*sta1lat])
sta1lonall = np.hstack([sta1lonall,np.ones(nperiods,)*sta1lon])
sta2latall = np.hstack([sta2latall,np.ones(nperiods,)*sta2lat])
sta2lonall = np.hstack([sta2lonall,np.ones(nperiods,)*sta2lon])
stationpairID = stationpairID + [pairID] * nperiods
dataall = pd.DataFrame({'sta1lat':sta1latall, 'sta1lon':sta1lonall, \
'sta2lat':sta2latall, 'sta2lon':sta2lonall, \
'periods':periodsall, 'dispersion': dispersionall, \
'pairid':stationpairID})
dataall = dataall.sort_values(by = ['periods', 'pairid'])
dataall = dataall.set_index('periods')
with open('surfdata.dat','w') as fout:
UniqPeriods = dataall.index.unique()
for iperiod,period in enumerate(UniqPeriods):
datasubperiod = dataall.loc[period]
if isinstance(datasubperiod,pd.Series):
continue
datasubperiod = datasubperiod.reset_index().set_index('sta1lat')
sta1lat = datasubperiod.index.unique()
for ista1 in sta1lat:
datasubstation = datasubperiod.loc[ista1]
if isinstance(datasubstation,pd.DataFrame):
fout.write(f'# {datasubstation.index[0]} {datasubstation["sta1lon"].iloc[0]} {iperiod+1} {wavetype} {phasetype}\n')
for ista2 in range(len(datasubstation)):
fout.write(f'{datasubstation["sta2lat"].iloc[ista2]} {datasubstation["sta2lon"].iloc[ista2]} {datasubstation["dispersion"].iloc[ista2]}\n')
else:
fout.write(f'# {datasubstation.name} {datasubstation["sta1lon"]} {iperiod+1} {wavetype} {phasetype}\n')
fout.write(f'{datasubstation["sta2lat"]} {datasubstation["sta2lon"]} {datasubstation["dispersion"]}\n')
print('Finish reformatting disperison data')
# Determin the grid interval, 1/3 of the smallest station distance
# Weight and Damp, you will have to run the code a couple of time to decide
# The default values is 5.0 and 1.0, respectively
weight = 1.0
damp = 1.0
# Sparsity fraction, this parameter represent the sparsity of the sensitivity matrix and is set to be 0.2 for safe keeping, but could be as low as 0.02.it is not important as long as your code does not throw you memory erros
sparsityfraction = 0.1
# Iteration number, the default is 10 time, most often you get stable results after 4-5 iterations.
maxiteration = 10
distall = np.sqrt((dataall['sta2lat']-dataall['sta1lat'])**2+(dataall['sta2lon']-dataall['sta1lon'])**2)
mindist = distall.min()
gridintval = int(np.ceil(mindist/3*1000))/1000
# Determine the origin, 1 grids
originLat = np.max([np.max(dataall.sta1lat.max()),np.max(dataall.sta2lat.max())]) + 1*gridintval
originLon = np.min([np.min(dataall.sta1lon.min()),np.min(dataall.sta2lon.min())]) - 1*gridintval
largestLat = np.max([dataall['sta1lat'].max()-dataall['sta1lat'].min(),dataall['sta2lat'].max()-dataall['sta2lat'].min()])
largestLon = np.max([dataall['sta1lon'].max()-dataall['sta1lon'].min(),dataall['sta2lon'].max()-dataall['sta2lon'].min()])
inputfile = open('DSurfTomo.in','w')
dummy = 'cccc'
inputfile.write(f'{dummy*10}\n')
inputfile.write(f'{dummy*10}\n')
inputfile.write(f'{dummy*10}\n')
inputfile.write('surfdata.dat\n')
nx = int(np.ceil(largestLat/gridintval))+5
ny = int(np.ceil(largestLon/gridintval))+5
nreceivers = len(dataall.sta1lat.unique())+1
inputfile.write(f'{nx} {ny} {nz}\n')
inputfile.write(f'{originLat:<7.3f} {originLon:7.3f}\n')
inputfile.write(f'{gridintval:<7.3f} {gridintval:7.3f}\n')
inputfile.write(f'{nreceivers}\n')
inputfile.write(f'{weight} {damp}\n')
inputfile.write(f'{sublayers}\n')
inputfile.write(f'{minvel} {maxvel}\n')
inputfile.write(f'{maxiteration}\n')
inputfile.write(f'{sparsityfraction}\n')
nperiods = len(UniqPeriods)
inputfile.write(f'{nperiods}\n')
#inputfile.write(f'{*UniqPeriods}\n')
inputfile.write(' '.join([str(iperiod) for iperiod in UniqPeriods])+'\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'0\n')
inputfile.write(f'{noiselevel}\n')
inputfile.write(f'{datathreshold}\n')
inputfile.close()
print('Finishing generating input file\n')

View File

@ -1378,13 +1378,11 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
! if required.
!
if (igrt(srcnum,knumi) == 0 .or. (ig == 2 .and. igrt(srcnum,knumi) == 1)) then
! a little stupid, remember to change latter
!if (igrt(srcnum,knumi) == 1) then
!call gridder(velf0)
!endif
count11=count11+1
CALL rpaths(x,z,fdm,rcxf(istep,srcnum,knumi),rczf(istep,srcnum,knumi))
row(1:nparpi)=0.0
! change the Brocher relationship if depth is larger than 35 km
if (depz(nz-1)<35.0) then
do jj=1,nvz
do kk=1,nvx
if(abs(fdm(jj,kk)).ge.ftol) then
@ -1402,6 +1400,28 @@ subroutine CalSurfG(nx,ny,nz,nparpi,vels,iw,rw,col,dsurf, &
endif
enddo
enddo
! use a different formulation between Vp, Vs, and Rho, according to Luosong's
else
do jj=1,nvz
do kk=1,nvx
if(abs(fdm(jj,kk)).ge.ftol) then
coe_a=(2.2110-0.8984*2*vels(kk+1,jj+1,1:nz-1)+&
0.2786*3*vels(kk+1,jj+1,1:nz-1)**2-0.02412*4*vels(kk+1,jj+1,1:nz-1)**3)
vpft=0.9098 + 2.2110*vels(kk+1,jj+1,1:nz-1) - 0.8984*vels(kk+1,jj+1,1:nz-1)**2+ &
0.2786*vels(kk+1,jj+1,1:nz-1)**3 - 0.02412*vels(kk+1,jj+1,1:nz-1)**4
coe_rho=coe_a*(1.6612-0.4721*2*vpft+&
0.0671*3*vpft**2-0.0043*4*vpft**3+&
0.000106*5*vpft**4)
row((jj-1)*nvx+kk:(nz-2)*nvz*nvx+(jj-1)*nvx+kk:nvx*nvz)=&
(sen_vp(jj*(nvx+2)+kk+1,knumi,1:nz-1)*coe_a+&
sen_rho(jj*(nvx+2)+kk+1,knumi,1:nz-1)*coe_rho+&
sen_vs(jj*(nvx+2)+kk+1,knumi,1:nz-1))*fdm(jj,kk)
endif
enddo
enddo
endif
do nn=1,nparpi
if(abs(row(nn)).gt.ftol) then
nar=nar+1