Merge pull request #1 from dkoguciuk/master

Several bugfixes.
This commit is contained in:
William Durand 2018-02-20 18:02:08 +01:00 committed by GitHub
commit fba3a48366
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 34814 additions and 17455 deletions

52058
CImg.h

File diff suppressed because it is too large Load Diff

View File

@ -19,7 +19,7 @@ public:
* @param const int x Coordinate X * @param const int x Coordinate X
* @param const int y Coordinate Y * @param const int y Coordinate Y
*/ */
Euclidean(const int x, const int y) : _x(x), _y(y) {} Euclidean(const int x, const int y) : _x(x), _y(y), _distance(0) {}
/** /**
* @param const int x Coordinate X * @param const int x Coordinate X

209
main.cpp
View File

@ -13,7 +13,7 @@
#include "Euclidean.hpp" #include "Euclidean.hpp"
#define MAX_ITERATIONS 15 #define MAX_ITERATIONS 3
// Variance delta // Variance delta
#define DELTA 50 #define DELTA 50
@ -40,130 +40,108 @@ double sum(CImg<float> img, int startedX, int startedY, int w) {
CImg<float> decompose(const CImg<float> input) CImg<float> decompose(const CImg<float> input)
{ {
CImg<float>inputImg(input);
std::vector<Euclidean> vectEMax, vectEMin;
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
// Part 1: Finding minimas and maximas // // Part 1: Finding minimas and maximas //
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
CImg<float> imgMax(inputImg.channel(0)); std::vector<Euclidean> vectEMax, vectEMin;
CImg<float> imgMin(inputImg.channel(0)); CImg<float> imgMax(input.width(), input.height());
CImg<float> imgMin(input.width(), input.height());
int xmin, xmax, ymin, ymax; for (int i = 0; i < input.width(); i += SIZE)
float min, max; for (int j = 0; j < input.height(); j += SIZE)
{
for (int i = 0; i < inputImg.width(); i += SIZE) {
for (int j = 0; j < inputImg.height(); j += SIZE) {
// Save max and min locations // Save max and min locations
xmax = i; int xmin=i, xmax=i, ymin=j, ymax=j;
ymax = j; float min = input(i,j), max = input(i,j);
xmin = i; imgMax(i,j) = input(i,j);
ymin = j; imgMin(i,j) = input(i,j);
// save values
max = imgMax(i,j);
min = imgMin(i,j);
Euclidean eMax(i, j);
Euclidean eMin(i, j);
// SIZExSIZE // SIZExSIZE
for (int k = i; k < i + SIZE; k++) { for (int k = i; k < i + SIZE; k++)
for (int l = j; l < j + SIZE; l++) { for (int l = j; l < j + SIZE; l++)
{
// Max // Max
if ((imgMax(k, l) <= max) && (l != ymax || k != xmax)) { if ((input(k, l) > max) && (l != ymax || k != xmax))
imgMax(k, l) = 0; {
} else if (l!=ymax || k!=xmax) { imgMax(xmax, ymax) = 0;
max = imgMax(k, l); max = input(k, l);
imgMax(xmax,ymax) = 0; imgMax(k,l) = max;
xmax = k; xmax = k;
ymax = l; ymax = l;
eMax.setX(k);
eMax.setY(l);
} }
// Min // Min
if ((imgMin(k, l) >= min) && (l != ymin || k != xmin)) { if ((imgMin(k, l) < min) && (l != ymin || k != xmin))
imgMin(k, l) = 0; {
} else if (l != ymax || k != xmax) { imgMax(xmax, ymax) = 0;
min = imgMin(k, l); min = imgMin(k, l);
imgMin(xmin, ymin) = 0; imgMax(k,l) = max;
xmin = k; xmin = k;
ymin = l; ymin = l;
eMin.setX(k);
eMin.setY(l);
} }
} }
}
vectEMax.push_back(eMax); vectEMax.push_back(Euclidean(xmax,ymax));
vectEMin.push_back(eMin); vectEMin.push_back(Euclidean(xmin,ymin));
} }
}
// Array of Euclidean distance to the nearest non zero element // Array of Euclidean distance to the nearest non zero element
std::vector<Euclidean>::iterator it1, it2; std::vector<Euclidean>::iterator it1, it2;
for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++) { for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++)
for (it2 = it1 + 1; it2 != vectEMax.end(); it2++) { for (it2 = it1 + 1; it2 != vectEMax.end(); it2++)
{
double dist = (*it1).computeDistanceFrom(*it2); double dist = (*it1).computeDistanceFrom(*it2);
if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { if ((*it1).getDistance() == 0 || dist < (*it1).getDistance())
{
(*it1).setDistance(dist); (*it1).setDistance(dist);
(*it1).setNearest(*it2); (*it1).setNearest(*it2);
} }
if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { if ((*it2).getDistance() == 0 || dist < (*it2).getDistance())
{
(*it2).setDistance(dist); (*it2).setDistance(dist);
(*it2).setNearest(*it1); (*it2).setNearest(*it1);
} }
} }
}
for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++) { for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++)
for (it2 = it1 + 1; it2 != vectEMin.end(); it2++) { for (it2 = it1 + 1; it2 != vectEMin.end(); it2++)
{
double dist = (*it1).computeDistanceFrom(*it2); double dist = (*it1).computeDistanceFrom(*it2);
if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { if ((*it1).getDistance() == 0 || dist < (*it1).getDistance())
{
(*it1).setDistance(dist); (*it1).setDistance(dist);
(*it1).setNearest(*it2); (*it1).setNearest(*it2);
} }
if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { if ((*it2).getDistance() == 0 || dist < (*it2).getDistance())
{
(*it2).setDistance(dist); (*it2).setDistance(dist);
(*it2).setNearest(*it1); (*it2).setNearest(*it1);
} }
} }
}
// Calculate the window size // Calculate the window size
int wmax = 0; double d = MAX(Euclidean::max(vectEMax), Euclidean::max(vectEMin));
for(unsigned int i = 0; i < vectEMin.size(); i++) { int wmax = 2*((int)d/2)+1;
double d = MAX(Euclidean::max(vectEMax), Euclidean::max(vectEMin));
wmax = (int)ceil(d);
if(wmax % 2 == 0) {
wmax++;
}
}
CImg<float> imgSource(inputImg.channel(0));
// Order filters with source image // Order filters with source image
std::vector<float> vectFilterMax, vectFilterMin; std::vector<float> vectFilterMax, vectFilterMin;
for(int unsigned i = 0; i < vectEMax.size(); i++)
for(int unsigned i = 0; i < vectEMax.size(); i++) { {
float max = 0; float max = 0;
for (int k = vectEMax[i].getX() - ((wmax - 1) / 2); k < vectEMax[i].getX() + ((wmax + 1) / 2); k++) { for (int k = vectEMax[i].getX() - ((wmax - 1) / 2); k < vectEMax[i].getX() + ((wmax + 1) / 2); k++)
for (int l = vectEMax[i].getY() - ((wmax - 1) / 2); l < vectEMax[i].getY() + ((wmax + 1) / 2); l++) { {
if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { for (int l = vectEMax[i].getY() - ((wmax - 1) / 2); l < vectEMax[i].getY() + ((wmax + 1) / 2); l++)
if (imgSource(k, l) > max) { {
max = imgSource(k, l); if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
if (input(k, l) > max)
{
max = input(k, l);
} }
} }
} }
@ -171,13 +149,17 @@ CImg<float> decompose(const CImg<float> input)
vectFilterMax.push_back(max); vectFilterMax.push_back(max);
} }
for(int unsigned i = 0; i < vectEMin.size(); i++) { for(int unsigned i = 0; i < vectEMin.size(); i++)
{
float min = 255; float min = 255;
for (int k = vectEMin[i].getX() - ((wmax - 1) / 2); k < vectEMin[i].getX() + ((wmax + 1) / 2); k++) { for (int k = vectEMin[i].getX() - ((wmax - 1) / 2); k <= vectEMin[i].getX() + ((wmax + 1) / 2); k++)
for (int l = vectEMin[i].getY() - ((wmax - 1) / 2); l < vectEMin[i].getY() + ((wmax + 1) / 2); l++) { {
if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { for (int l = vectEMin[i].getY() - ((wmax - 1) / 2); l < vectEMin[i].getY() + ((wmax + 1) / 2); l++)
if (imgSource(k, l) < min) { {
min = imgSource(k, l); if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
if (input(k, l) < min) {
min = input(k, l);
} }
} }
} }
@ -185,55 +167,61 @@ CImg<float> decompose(const CImg<float> input)
vectFilterMin.push_back(min); vectFilterMin.push_back(min);
} }
CImg<float> newImgMax(imgMax.width(), imgMax.height());
// Calculate the upper envelope // Calculate the upper envelope
for(int unsigned i = 0; i < vectEMax.size(); i++) { CImg<float> newImgMax(imgMax.width(), imgMax.height());
for (int k = vectEMax[i].getX() - ((wmax - 1) / 2); k < vectEMax[i].getX() + ((wmax + 1) / 2); k++) { for(int unsigned i = 0; i < vectEMax.size(); i++)
for (int l = vectEMax[i].getY() - ((wmax - 1) / 2); l < vectEMax[i].getY() + ((wmax + 1) / 2); l++) { {
if ((k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height())) { for (int k = vectEMax[i].getX() - ((wmax - 1) / 2); k < vectEMax[i].getX() + ((wmax + 1) / 2); k++)
if( imgMax(k, l) == 0 ) { {
for (int l = vectEMax[i].getY() - ((wmax - 1) / 2); l < vectEMax[i].getY() + ((wmax + 1) / 2); l++)
{
if ((k >= 0 && k < input.width()) && (l >= 0 && l < input.height()))
{
if (imgMax(k, l) == 0)
imgMax(k, l) = vectFilterMax[i]; imgMax(k, l) = vectFilterMax[i];
} else
else {
imgMax(k, l) = (int)((imgMax(k, l) + vectFilterMax[i]) / 2); imgMax(k, l) = (int)((imgMax(k, l) + vectFilterMax[i]) / 2);
}
} }
} }
} }
} }
// Smooth of the upper envelope // Smooth of the upper envelope
for (int k = 0; k < imgSource.width(); k++) { for (int k = 0; k < input.width(); k++)
for (int l = 0; l < imgSource.height(); l++) { {
if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { for (int l = 0; l < input.height(); l++) {
if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
newImgMax(k, l) = (int)sum(imgMax, k, l, wmax) / (wmax * wmax); newImgMax(k, l) = (int)sum(imgMax, k, l, wmax) / (wmax * wmax);
} }
} }
} }
CImg<float> newImgMin(imgMin.width(), imgMin.height());
// Calculate the lower envelope // Calculate the lower envelope
CImg<float> newImgMin(imgMin.width(), imgMin.height());
for(int unsigned i = 0; i < vectEMin.size(); i++) { for(int unsigned i = 0; i < vectEMin.size(); i++) {
for (int k = vectEMin[i].getX() - ((wmax - 1) / 2); k < vectEMin[i].getX() + ((wmax + 1) / 2); k++) { for (int k = vectEMin[i].getX() - ((wmax - 1) / 2); k < vectEMin[i].getX() + ((wmax + 1) / 2); k++)
for (int l = vectEMin[i].getY() - ((wmax - 1) / 2); l < vectEMin[i].getY() + ((wmax + 1) / 2); l++) { {
if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { for (int l = vectEMin[i].getY() - ((wmax - 1) / 2); l < vectEMin[i].getY() + ((wmax + 1) / 2); l++)
if( imgMin(k, l) == 0 ) { {
if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
if( imgMin(k, l) == 0 )
imgMin(k, l) = vectFilterMin[i]; imgMin(k, l) = vectFilterMin[i];
} else
else {
imgMin(k, l) = (int)((imgMin(k, l) + vectFilterMin[i]) / 2); imgMin(k, l) = (int)((imgMin(k, l) + vectFilterMin[i]) / 2);
}
} }
} }
} }
} }
// Smooth of the lower envelope // Smooth of the lower envelope
for (int k = 0; k < imgSource.width(); k++) { for (int k = 0; k < input.width(); k++)
for (int l = 0; l < imgSource.height(); l++) { {
if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { for (int l = 0; l < input.height(); l++)
{
if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
newImgMin(k, l) = (int)sum(imgMin, k, l, wmax) / (wmax * wmax); newImgMin(k, l) = (int)sum(imgMin, k, l, wmax) / (wmax * wmax);
} }
} }
@ -244,19 +232,16 @@ CImg<float> decompose(const CImg<float> input)
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
// Calculate the Average // Calculate the Average
CImg<float> imgMoyenne(inputImg.width(), inputImg.height()); CImg<float> imgMoyenne(input.width(), input.height());
for (int i = 0; i < input.width(); i++)
for (int i = 0; i < inputImg.width(); i++) { for (int j = 0; j < input.height(); j++)
for (int j = 0; j < inputImg.height(); j++) {
imgMoyenne(i, j) = (newImgMin(i, j) + newImgMax(i, j)) /2; imgMoyenne(i, j) = (newImgMin(i, j) + newImgMax(i, j)) /2;
}
}
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
// Partie 3: Deletion // // Partie 3: Deletion //
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
return inputImg - imgMoyenne; return input - imgMoyenne;
} }
/******************************************************************************* /*******************************************************************************