//////////////////////////////////////////////////////////////////////////////// // Empirical Mode Decomposition // // BERNARD Guillaume // // DURAND William // // ZZ3F2 ISIMA // //////////////////////////////////////////////////////////////////////////////// #include "CImg.h" #include #include #include "Euclidean.hpp" #define MIN(x,y) ((x)<(y)?(x):(y)) #define MAX(x,y) ((x)>(y)?(x):(y)) using namespace cimg_library; /* double min(std::vector vect) { double min = (*vect.begin()).getDistance(); std::vector::iterator it; for (it = vect.begin() + 1; it != vect.end(); it++) { if ((*it).getDistance() < min) { min = (*it).getDistance(); } } return min; } double max(std::vector vect) { double max = (*vect.begin()).getDistance(); std::vector::iterator it; for (it = vect.begin() + 1; it != vect.end(); it++) { if ((*it).getDistance() > max) { max = (*it).getDistance(); } } return max; } */ /******************************************************************************* Main *******************************************************************************/ int main() { CImg imgLena("lena.bmp"); CImgDisplay dispBase(imgLena,"Image de base"); std::vector vectEMax, vectEMin; std::vector w; /////////////////////////////////////////////////////////////////////////////// // Part 1: Finding minimas and maximas // /////////////////////////////////////////////////////////////////////////////// CImg imgMax = imgLena.channel(0); CImg imgMin = imgLena.channel(0); for (int i = 0; i= min)&&(l!=ymin &&k!=xmin)) { imgMin(k,l) = 0; } else { min = imgMin(k,l); imgMin(xmin,ymin) = 0; xmin = k; ymin = l; eMin.setX(k); eMin.setY(l); } } } vectEMax.push_back(eMax); vectEMin.push_back(eMin); } } // Array of Euclidean distance to the nearest non zero element std::vector::iterator it1, it2; for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMax.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMin.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } // Calculate the windows sizes for(unsigned int i = 0; i < vectEMin.size(); i++) { double d1 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d2 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d3 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d4 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance()); int wi = (int)ceil(MIN(MIN(d1, d2), MIN(d3, d4))); wi = wi % 2 ? wi + 1 : wi; w.push_back(wi); } CImg imgSource = imgLena.channel(0); // Order filters with source image std::vector vectFilterMax, vectFilterMin; for(unsigned int i = 0; i < vectEMax.size(); i++) { unsigned char max = 0; for (int k = vectEMax[i].getX() - ((w[i] + 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((w[i] + 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) { if (imgSource(k, l) > max) { max = imgSource(k, l); } } } vectFilterMax.push_back(max); } for(unsigned int i = 0; i < vectEMin.size(); i++) { unsigned char min = 199; for (int k = vectEMin[i].getX() - ((w[i] + 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((w[i] + 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) { if (imgSource(k, l) < min) { min = imgSource(k, l); } } } vectFilterMin.push_back(min); } CImg newImgMax(imgMax.width(), imgMax.height()); // Calculate the upper envelope for(unsigned int i = 0; i < vectEMax.size(); i++) { for (int k = vectEMax[i].getX() - ((w[i] + 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((w[i] + 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) { if( (k == vectEMax[i].getX() && l == vectEMax[i].getY()) || imgMax(k, l) == 0 ) { newImgMax(k, l) = vectFilterMax[i]; } else { newImgMax(k, l) = (imgMax(k, l) + vectFilterMax[i]) / 2; } } } } CImg newImgMin(imgMin.width(), imgMin.height()); // Calculate the lower envelope for(unsigned int i = 0; i < vectEMin.size(); i++) { for (int k = vectEMin[i].getX() - ((w[i] + 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((w[i] + 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) { if( (k == vectEMin[i].getX() && l == vectEMin[i].getY()) || imgMin(k, l) == 0 ) { newImgMin(k, l) = vectFilterMin[i]; } else { newImgMin(k, l) = (imgMin(k, l) + vectFilterMin[i]) / 2; } } } } // Display images for max and min CImgDisplay dispMax(newImgMax,"Image de Max"); CImgDisplay dispMin(newImgMin,"Image de Min"); /////////////////////////////////////////////////////////////////////////////// // Part 2: Average // /////////////////////////////////////////////////////////////////////////////// // Calculate the Average CImg imgMoyenne(imgLena.width(), imgLena.height()); for (int i = 0; i imgFin = imgLena - imgMoyenne; CImgDisplay dispFin(imgFin,"Image Finale"); while (!dispBase.is_closed()) { dispBase.wait(); } return 0; }