//////////////////////////////////////////////////////////////////////////////// // Empirical Mode Decomposition // // BERNARD Guillaume // // DURAND William // // ZZ3F2 ISIMA // //////////////////////////////////////////////////////////////////////////////// #include "CImg.h" #include #include #include #include "Euclidean.hpp" #define MIN(x,y) ((x)<(y)?(x):(y)) #define MAX(x,y) ((x)>(y)?(x):(y)) using namespace cimg_library; double Sum(CImg img, int startedX, int startedY, int w) { double res = 0; for(int i = startedX; i < startedX + w; i++) { for(int j = startedY; j < startedY + w; j++) { res = img(i,j); } } return res; } /******************************************************************************* Main *******************************************************************************/ int main() { #ifdef DEBUG CImg inputImg(8, 8, 1, 3); int tab[][8] = { { 8, 8, 4, 1, 5, 2, 6, 3 }, { 6, 3, 2, 3, 7, 3, 9, 3 }, { 7, 8, 3, 2, 1, 4, 3, 7 }, { 4, 1, 2, 4, 3, 5, 7, 8 }, { 6, 4, 2, 1, 2, 5, 3, 4 }, { 1, 3, 7, 9, 9, 8, 7, 8 }, { 9, 2, 6, 7, 6, 8, 7, 7 }, { 8, 2, 1, 9, 7, 9, 1, 1 } }; printf("Base:\n"); for (int i = 0; i < inputImg.width(); i++) { for (int j = 0; j < inputImg.height(); j++) { inputImg(i, j) = tab[i][j]; printf("%d ", inputImg(i, j)); } printf("\n"); } #else CImg inputImg("lena.bmp"); CImgDisplay dispBase(inputImg,"Image de base"); #endif std::vector vectEMax, vectEMin; std::vector w; /////////////////////////////////////////////////////////////////////////////// // Part 1: Finding minimas and maximas // /////////////////////////////////////////////////////////////////////////////// CImg imgMax(inputImg.channel(0)); CImg imgMin(inputImg.channel(0)); for (int i = 0; i < inputImg.width(); i += 3) { for (int j = 0; j < inputImg.height(); j += 3) { // Save max and min locations int xmax = i; int ymax = j; int xmin = i; int ymin = j; // save values unsigned char max = imgMax(i,j); unsigned char min = imgMin(i,j); Euclidean eMax(i, j); Euclidean eMin(i, j); // 3x3 for (int k = i; k= min)&&(l!=ymin &&k!=xmin)) { imgMin(k,l) = 0; } else { min = imgMin(k,l); imgMin(xmin,ymin) = 0; xmin = k; ymin = l; eMin.setX(k); eMin.setY(l); } } } vectEMax.push_back(eMax); vectEMin.push_back(eMin); } } #ifdef DEBUG printf("- Extremas\n"); printf("Max\n"); for (int i = 0; i < imgMax.width(); i++) { for (int j = 0; j < imgMax.height(); j++) { printf("%d ", imgMax(i, j)); } printf("\n"); } printf("Min\n"); for (int i = 0; i < imgMin.width(); i++) { for (int j = 0; j < imgMin.height(); j++) { printf("%d ", imgMin(i, j)); } printf("\n"); } #endif // Array of Euclidean distance to the nearest non zero element std::vector::iterator it1, it2; for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMax.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMin.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } // Calculate the windows sizes for(unsigned int i = 0; i < vectEMin.size(); i++) { double d1 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d2 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d3 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d4 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance()); int wi = (int)ceil(MIN(MIN(d1, d2), MIN(d3, d4))); wi = wi % 2 ? wi + 1 : wi; w.push_back(wi); } CImg imgSource(inputImg.channel(0)); // Order filters with source image std::vector vectFilterMax, vectFilterMin; for(unsigned int i = 0; i < vectEMax.size(); i++) { unsigned char max = 0; for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) { if (imgSource(k, l) > max) { max = imgSource(k, l); } } } vectFilterMax.push_back(max); } for(unsigned int i = 0; i < vectEMin.size(); i++) { unsigned char min = 199; for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) { if (imgSource(k, l) < min) { min = imgSource(k, l); } } } vectFilterMin.push_back(min); } CImg newImgMax(imgMax.width(), imgMax.height()); // Calculate the upper envelope for(unsigned int i = 0; i < vectEMax.size(); i++) { for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) { if( (k == vectEMax[i].getX() && l == vectEMax[i].getY()) || imgMax(k, l) == 0 ) { imgMax(k, l) = vectFilterMax[i]; } else { imgMax(k, l) = (imgMax(k, l) + vectFilterMax[i]) / 2; } } } } // Smooth of the upper envelope for(unsigned int i = 0; i < vectEMax.size(); i++) { double sum = Sum(imgMax, vectEMax[i].getX() - ((w[i] + 1) / 2), vectEMax[i].getY() - ((w[i] + 1) / 2), w[i]); for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) { newImgMax(k, l) = (1./(w[i]*w[i])) * sum; } } } CImg newImgMin(imgMin.width(), imgMin.height()); // Calculate the lower envelope for(unsigned int i = 0; i < vectEMin.size(); i++) { for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) { if( (k == vectEMin[i].getX() && l == vectEMin[i].getY()) || imgMin(k, l) == 0 ) { imgMin(k, l) = vectFilterMin[i]; } else { imgMin(k, l) = (imgMin(k, l) + vectFilterMin[i]) / 2; } } } } // Smooth of the lower envelope for(unsigned int i = 0; i < vectEMax.size(); i++) { double sum = Sum(imgMin, vectEMin[i].getX() - ((w[i] + 1) / 2), vectEMin[i].getY() - ((w[i] + 1) / 2), w[i]); for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) { newImgMin(k, l) = (1./(w[i]*w[i])) * sum; } } } #ifdef DEBUG printf("- Envelopes\n"); printf("Max\n"); for (int i = 0; i < newImgMax.width(); i++) { for (int j = 0; j < newImgMax.height(); j++) { printf("%d ", newImgMax(i, j)); } printf("\n"); } printf("Min\n"); for (int i = 0; i < newImgMin.width(); i++) { for (int j = 0; j < newImgMin.height(); j++) { printf("%d ", newImgMin(i, j)); } printf("\n"); } #else // Display images for max and min CImgDisplay dispMax(imgMax,"Image de Max"); CImgDisplay dispMin(imgMin,"Image de Min"); CImgDisplay dispEMax(newImgMax,"Image de enveloppe Max"); CImgDisplay dispEMin(newImgMin,"Image de enveloppe Min"); #endif /////////////////////////////////////////////////////////////////////////////// // Part 2: Average // /////////////////////////////////////////////////////////////////////////////// // Calculate the Average CImg imgMoyenne(inputImg.width(), inputImg.height()); for (int i = 0; i < inputImg.width(); i++) { for (int j = 0; j < inputImg.height(); j++) { imgMoyenne(i, j) = (newImgMin(i, j) + newImgMax(i, j)) /2; } } #ifdef DEBUG printf("- Average\n"); for (int i = 0; i < imgMoyenne.width(); i++) { for (int j = 0; j < imgMoyenne.height(); j++) { printf("%d ", imgMoyenne(i, j)); } printf("\n"); } #else CImgDisplay dispMoyenne(imgMoyenne,"Image Moyenne"); #endif /////////////////////////////////////////////////////////////////////////////// // Partie 3: Deletion // /////////////////////////////////////////////////////////////////////////////// #ifndef DEBUG CImg imgFin(inputImg - imgMoyenne); CImgDisplay dispFin(imgFin,"Image Finale"); while (!dispBase.is_closed()) { dispBase.wait(); } #endif return 0; }