//////////////////////////////////////////////////////////////////////////////// // Empirical Mode Decomposition // // BERNARD Guillaume // // DURAND William // // ZZ3F2 ISIMA // //////////////////////////////////////////////////////////////////////////////// #include "CImg.h" #include #include #include "Euclidean.hpp" #define MIN(x,y) ((x)<(y)?(x):(y)) #define MAX(x,y) ((x)>(y)?(x):(y)) using namespace cimg_library; double min(std::vector vect) { double min = (*vect.begin()).getDistance(); std::vector::iterator it; for (it = vect.begin() + 1; it != vect.end(); it++) { if ((*it).getDistance() < min) { min = (*it).getDistance(); } } return min; } double max(std::vector vect) { double max = (*vect.begin()).getDistance(); std::vector::iterator it; for (it = vect.begin() + 1; it != vect.end(); it++) { if ((*it).getDistance() > max) { max = (*it).getDistance(); } } return max; } /******************************************************************************* Main *******************************************************************************/ int main() { CImg imgLena("lena.bmp"); CImgDisplay dispBase(imgLena,"Image de base"); std::vector vectEMax, vectEMin; /////////////////////////////////////////////////////////////////////////////// // Part 1: Finding minimas and maximas // /////////////////////////////////////////////////////////////////////////////// CImg imgMax = imgLena.channel(0); CImg imgMin = imgLena.channel(0); imgMax.print(); for (int i = 0; i= min)&&(l!=ymin &&k!=xmin)) { imgMin(k,l) = 0; } else { min = imgMin(k,l); imgMin(xmin,ymin) = 0; xmin = k; ymin = l; eMin.setX(k); eMin.setY(l); } } } vectEMax.push_back(eMax); vectEMin.push_back(eMin); } } // Array of Euclidean distance to the nearest non zero element std::vector::iterator it1, it2; for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMax.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMin.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } // Calculate the window size double d1 = MIN(min(vectEMax), min(vectEMin)); double d2 = MAX(min(vectEMax), min(vectEMin)); double d3 = MIN(max(vectEMax), max(vectEMin)); double d4 = MAX(max(vectEMax), max(vectEMin)); int w = ((int)ceil(MIN(MIN(d1, d2), MIN(d3, d4)))) % 2 ? w + 1 : w; // Order filters with source image // Calculate the upper envelope // Calculate the lower envelope // Display images for max and min CImgDisplay dispMax(imgMax,"Image de Max"); CImgDisplay dispMin(imgMin,"Image de Min"); /////////////////////////////////////////////////////////////////////////////// // Part 2: Average // /////////////////////////////////////////////////////////////////////////////// // Calculate the Average CImg imgMoyenne = (imgMax+imgMin)/2; CImgDisplay dispMoyenne(imgMoyenne,"Image Moyenne"); /////////////////////////////////////////////////////////////////////////////// // Partie 3: Deletion // /////////////////////////////////////////////////////////////////////////////// CImg imgFin = imgLena - imgMoyenne; CImgDisplay dispFin(imgFin,"Image Finale"); while (!dispBase.is_closed()) { dispBase.wait(); } return 0; }