//////////////////////////////////////////////////////////////////////////////// // Empirical Mode Decomposition // // BERNARD Guillaume // // DURAND William // // ZZ3F2 ISIMA // //////////////////////////////////////////////////////////////////////////////// #include "CImg.h" #include #include #include #include "Euclidean.hpp" #define NB_ITERATIONS 10 #define MIN(x,y) ((x)<(y)?(x):(y)) #define MAX(x,y) ((x)>(y)?(x):(y)) using namespace cimg_library; int SIZE = 3; double sum(CImg img, int startedX, int startedY, int w) { double res = 0; for (int i = startedX - ((w - 1) / 2); i < startedX + ((w + 1) / 2); i++) { for (int j = startedY - ((w - 1) / 2) ; j < startedY + ((w + 1) / 2); j++) { if ((i >= 0 && i < img.width()) && (j >= 0 && j < img.height())) { res += img(i,j); } } } return res; } CImg decompose(const CImg input) { CImginputImg(input); std::vector vectEMax, vectEMin; /////////////////////////////////////////////////////////////////////////////// // Part 1: Finding minimas and maximas // /////////////////////////////////////////////////////////////////////////////// CImg imgMax(inputImg.channel(0)); CImg imgMin(inputImg.channel(0)); int xmin, xmax, ymin, ymax; float min, max; for (int i = 0; i < inputImg.width(); i += SIZE) { for (int j = 0; j < inputImg.height(); j += SIZE) { // Save max and min locations xmax = i; ymax = j; xmin = i; ymin = j; // save values max = imgMax(i,j); min = imgMin(i,j); Euclidean eMax(i, j); Euclidean eMin(i, j); // SIZExSIZE for (int k = i; k < i + SIZE; k++) { for (int l = j; l < j + SIZE; l++) { // Max if ((imgMax(k, l) <= max) && (l != ymax || k != xmax)) { imgMax(k, l) = 0; } else if (l!=ymax || k!=xmax) { max = imgMax(k, l); imgMax(xmax,ymax) = 0; xmax = k; ymax = l; eMax.setX(k); eMax.setY(l); } // Min if ((imgMin(k, l) >= min) && (l != ymin || k != xmin)) { imgMin(k, l) = 0; } else if (l != ymax || k != xmax) { min = imgMin(k, l); imgMin(xmin, ymin) = 0; xmin = k; ymin = l; eMin.setX(k); eMin.setY(l); } } } vectEMax.push_back(eMax); vectEMin.push_back(eMin); } } // Array of Euclidean distance to the nearest non zero element std::vector::iterator it1, it2; for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMax.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMin.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } // Calculate the window size int wmax = 0; for(unsigned int i = 0; i < vectEMin.size(); i++) { double d = MAX(Euclidean::max(vectEMax), Euclidean::max(vectEMin)); wmax = (int)ceil(d); if(wmax % 2 == 0) { wmax++; } } CImg imgSource(inputImg.channel(0)); // Order filters with source image std::vector vectFilterMax, vectFilterMin; for(int unsigned i = 0; i < vectEMax.size(); i++) { float max = 0; for (int k = vectEMax[i].getX() - ((wmax - 1) / 2); k < vectEMax[i].getX() + ((wmax + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((wmax - 1) / 2); l < vectEMax[i].getY() + ((wmax + 1) / 2); l++) { if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { if (imgSource(k, l) > max) { max = imgSource(k, l); } } } } vectFilterMax.push_back(max); } for(int unsigned i = 0; i < vectEMin.size(); i++) { float min = 255; for (int k = vectEMin[i].getX() - ((wmax - 1) / 2); k < vectEMin[i].getX() + ((wmax + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((wmax - 1) / 2); l < vectEMin[i].getY() + ((wmax + 1) / 2); l++) { if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { if (imgSource(k, l) < min) { min = imgSource(k, l); } } } } vectFilterMin.push_back(min); } CImg newImgMax(imgMax.width(), imgMax.height()); // Calculate the upper envelope for(int unsigned i = 0; i < vectEMax.size(); i++) { for (int k = vectEMax[i].getX() - ((wmax - 1) / 2); k < vectEMax[i].getX() + ((wmax + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((wmax - 1) / 2); l < vectEMax[i].getY() + ((wmax + 1) / 2); l++) { if ((k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height())) { if( imgMax(k, l) == 0 ) { imgMax(k, l) = vectFilterMax[i]; } else { imgMax(k, l) = (int)((imgMax(k, l) + vectFilterMax[i]) / 2); } } } } } // Smooth of the upper envelope for (int k = 0; k < imgSource.width(); k++) { for (int l = 0; l < imgSource.height(); l++) { if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { newImgMax(k, l) = (int)sum(imgMax, k, l, wmax) / (wmax * wmax); } } } CImg newImgMin(imgMin.width(), imgMin.height()); // Calculate the lower envelope for(int unsigned i = 0; i < vectEMin.size(); i++) { for (int k = vectEMin[i].getX() - ((wmax - 1) / 2); k < vectEMin[i].getX() + ((wmax + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((wmax - 1) / 2); l < vectEMin[i].getY() + ((wmax + 1) / 2); l++) { if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { if( imgMin(k, l) == 0 ) { imgMin(k, l) = vectFilterMin[i]; } else { imgMin(k, l) = (int)((imgMin(k, l) + vectFilterMin[i]) / 2); } } } } } // Smooth of the lower envelope for (int k = 0; k < imgSource.width(); k++) { for (int l = 0; l < imgSource.height(); l++) { if( (k >= 0 && k < imgSource.width()) && (l >= 0 && l < imgSource.height()) ) { newImgMin(k, l) = (int)sum(imgMin, k, l, wmax) / (wmax * wmax); } } } /////////////////////////////////////////////////////////////////////////////// // Part 2: Average // /////////////////////////////////////////////////////////////////////////////// // Calculate the Average CImg imgMoyenne(inputImg.width(), inputImg.height()); for (int i = 0; i < inputImg.width(); i++) { for (int j = 0; j < inputImg.height(); j++) { imgMoyenne(i, j) = (newImgMin(i, j) + newImgMax(i, j)) /2; } } /////////////////////////////////////////////////////////////////////////////// // Partie 3: Deletion // /////////////////////////////////////////////////////////////////////////////// return inputImg - imgMoyenne; } /******************************************************************************* Main *******************************************************************************/ int main(int argc, char **argv) { if (argc != 2) { printf("Usage: ./emd \n"); return 1; } char modeTitle[30], residueTitle[50]; CImgDisplay disp[NB_ITERATIONS * 2 + 1]; CImg inputImg(argv[1]), imgMode; disp[0].assign(inputImg, "Source Image"); for (int i = 1; i < NB_ITERATIONS + 1; i++) { sprintf(modeTitle, "BEMC-%d", i); sprintf(residueTitle, "Residue %s", modeTitle); fprintf(stdout, "Decomposing %s\n", modeTitle); imgMode = decompose(inputImg); inputImg = inputImg - imgMode; disp[i].assign(imgMode, modeTitle); disp[NB_ITERATIONS + i].assign(inputImg, residueTitle); } while (!disp[0].is_closed()) { disp[0].wait(); } return 0; }