//////////////////////////////////////////////////////////////////////////////// // Empirical Mode Decomposition // // BERNARD Guillaume // // DURAND William // // ZZ3F2 ISIMA // //////////////////////////////////////////////////////////////////////////////// #include "CImg.h" #include #include #include #include "Euclidean.hpp" #define MIN(x,y) ((x)<(y)?(x):(y)) #define MAX(x,y) ((x)>(y)?(x):(y)) using namespace cimg_library; double Sum(CImg img, int startedX, int startedY, int w) { double res = 0; for(int i = startedX - ((w - 1) / 2); i < startedX + ((w + 1) / 2); i++) { for(int j = startedY - ((w - 1) / 2) ; j < startedY + ((w + 1) / 2); j++) { if( (i >= 0 && i < img.width()) && (j >= 0 && j < img.height()) ) { res += img(i,j); } } } return res; } void ShowMatrix(CImg img) { std::cout << std::endl; for (int i = 0; i < 9 ; i++) { for (int j = 0; j < 9; j++) { std::cout << (double) img(i, j) << " "; } std::cout << std::endl; } std::cout << std::endl; } /******************************************************************************* Main *******************************************************************************/ int main() { #ifdef DEBUG CImg inputImg(8, 8, 1, 3); int tab[][8] = { { 8, 8, 4, 1, 5, 2, 6, 3 }, { 6, 3, 2, 3, 7, 3, 9, 3 }, { 7, 8, 3, 2, 1, 4, 3, 7 }, { 4, 1, 2, 4, 3, 5, 7, 8 }, { 6, 4, 2, 1, 2, 5, 3, 4 }, { 1, 3, 7, 9, 9, 8, 7, 8 }, { 9, 2, 6, 7, 6, 8, 7, 7 }, { 8, 2, 1, 9, 7, 9, 1, 1 } }; printf("Base:\n"); for (int i = 0; i < inputImg.width(); i++) { for (int j = 0; j < inputImg.height(); j++) { inputImg(i, j) = tab[i][j]; printf("%d ", inputImg(i, j)); } printf("\n"); } #else CImg inputImg("lena.bmp"); CImgDisplay dispBase(inputImg,"Image de base"); #endif std::vector vectEMax, vectEMin; /////////////////////////////////////////////////////////////////////////////// // Part 1: Finding minimas and maximas // /////////////////////////////////////////////////////////////////////////////// CImg imgMax(inputImg.channel(0)); CImg imgMin(inputImg.channel(0)); for (int i = 0; i < inputImg.width(); i += 3) { for (int j = 0; j < inputImg.height(); j += 3) { // Save max and min locations int xmax = i; int ymax = j; int xmin = i; int ymin = j; // save values unsigned char max = imgMax(i,j); unsigned char min = imgMin(i,j); Euclidean eMax(i, j); Euclidean eMin(i, j); // 3x3 for (int k = i; k= min) && (l!=ymin || k!=xmin)) { imgMin(k,l) = 0; } else if (l!=ymax || k!=xmax) { min = imgMin(k,l); imgMin(xmin,ymin) = 0; xmin = k; ymin = l; eMin.setX(k); eMin.setY(l); } } } vectEMax.push_back(eMax); vectEMin.push_back(eMin); } } #ifdef DEBUG printf("- Extremas\n"); printf("Max\n"); for (int i = 0; i < imgMax.width(); i++) { for (int j = 0; j < imgMax.height(); j++) { printf("%d ", imgMax(i, j)); } printf("\n"); } printf("Min\n"); for (int i = 0; i < imgMin.width(); i++) { for (int j = 0; j < imgMin.height(); j++) { printf("%d ", imgMin(i, j)); } printf("\n"); } #endif // Array of Euclidean distance to the nearest non zero element std::vector::iterator it1, it2; for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMax.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++) { for (it2 = it1 + 1; it2 != vectEMin.end(); it2++) { double dist = (*it1).computeDistanceFrom(*it2); if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) { (*it1).setDistance(dist); (*it1).setNearest(*it2); } if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) { (*it2).setDistance(dist); (*it2).setNearest(*it1); } } } int wmax = 0; std::vector w; // Calculate the windows sizes for(unsigned int i = 0; i < vectEMin.size(); i++) { double d1 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d2 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d3 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance()); double d4 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance()); int wi = (int)ceil(MIN(MIN(d1, d2), MIN(d3, d4))); if(wi%2 == 0) { wi++; } if(wi > wmax) { wmax=wi; } w.push_back(wi); } CImg imgSource(inputImg.channel(0)); // Order filters with source image std::vector vectFilterMax, vectFilterMin; for(int unsigned i = 0; i < vectEMax.size(); i++) { unsigned char max = 0; for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) { if( (k>=0 && k=0 && l max) { max = imgSource(k, l); } } } } vectFilterMax.push_back(max); } for(int unsigned i = 0; i < vectEMin.size(); i++) { unsigned char min = 255; for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) { if( (k>=0 && k=0 && l newImgMax(imgMax.width(), imgMax.height()); // Calculate the upper envelope for(int unsigned i = 0; i < vectEMax.size(); i++) { for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) { if( (k>=0 && k=0 && l=0 && k=0 && l newImgMin(imgMin.width(), imgMin.height()); // Calculate the lower envelope for(int unsigned i = 0; i < vectEMin.size(); i++) { for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) { for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) { if( (k>=0 && k=0 && l=0 && k=0 && l imgMoyenne(inputImg.width(), inputImg.height()); for (int i = 0; i < inputImg.width(); i++) { for (int j = 0; j < inputImg.height(); j++) { imgMoyenne(i, j) = (newImgMin(i, j) + newImgMax(i, j)) /2; } } #ifdef DEBUG printf("- Average\n"); for (int i = 0; i < imgMoyenne.width(); i++) { for (int j = 0; j < imgMoyenne.height(); j++) { printf("%d ", imgMoyenne(i, j)); } printf("\n"); } #else CImgDisplay dispMoyenne(imgMoyenne,"Image Moyenne"); #endif /////////////////////////////////////////////////////////////////////////////// // Partie 3: Deletion // /////////////////////////////////////////////////////////////////////////////// #ifndef DEBUG CImg imgFin(inputImg - imgMoyenne); CImgDisplay dispFin(imgFin,"Image Finale"); while (!dispBase.is_closed()) { dispBase.wait(); } #endif return 0; }