EMD/main.cpp
2015-10-26 00:05:53 +01:00

297 lines
9.9 KiB
C++

////////////////////////////////////////////////////////////////////////////////
// Empirical Mode Decomposition //
// BERNARD Guillaume //
// DURAND William //
// ZZ3F2 ISIMA //
////////////////////////////////////////////////////////////////////////////////
#include "CImg.h"
#include <math.h>
#include <vector>
#include <iostream>
#include "Euclidean.hpp"
#define MAX_ITERATIONS 3
// Variance delta
#define DELTA 50
#define MIN(x,y) ((x)<(y)?(x):(y))
#define MAX(x,y) ((x)>(y)?(x):(y))
using namespace cimg_library;
int SIZE = 3;
double sum(CImg<float> img, int startedX, int startedY, int w) {
double res = 0;
for (int i = startedX - ((w - 1) / 2); i < startedX + ((w + 1) / 2); i++) {
for (int j = startedY - ((w - 1) / 2) ; j < startedY + ((w + 1) / 2); j++) {
if ((i >= 0 && i < img.width()) && (j >= 0 && j < img.height())) {
res += img(i,j);
}
}
}
return res;
}
CImg<float> decompose(const CImg<float> input)
{
///////////////////////////////////////////////////////////////////////////////
// Part 1: Finding minimas and maximas //
///////////////////////////////////////////////////////////////////////////////
std::vector<Euclidean> vectEMax, vectEMin;
CImg<float> imgMax(input.width(), input.height());
CImg<float> imgMin(input.width(), input.height());
for (int i = 0; i < input.width(); i += SIZE)
for (int j = 0; j < input.height(); j += SIZE)
{
// Save max and min locations
int xmin=i, xmax=i, ymin=j, ymax=j;
float min = input(i,j), max = input(i,j);
imgMax(i,j) = input(i,j);
imgMin(i,j) = input(i,j);
// SIZExSIZE
for (int k = i; k < i + SIZE; k++)
for (int l = j; l < j + SIZE; l++)
{
// Max
if ((input(k, l) > max) && (l != ymax || k != xmax))
{
imgMax(xmax, ymax) = 0;
max = input(k, l);
imgMax(k,l) = max;
xmax = k;
ymax = l;
}
// Min
if ((imgMin(k, l) < min) && (l != ymin || k != xmin))
{
imgMax(xmax, ymax) = 0;
min = imgMin(k, l);
imgMax(k,l) = max;
xmin = k;
ymin = l;
}
}
vectEMax.push_back(Euclidean(xmax,ymax));
vectEMin.push_back(Euclidean(xmin,ymin));
}
// Array of Euclidean distance to the nearest non zero element
std::vector<Euclidean>::iterator it1, it2;
for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++)
for (it2 = it1 + 1; it2 != vectEMax.end(); it2++)
{
double dist = (*it1).computeDistanceFrom(*it2);
if ((*it1).getDistance() == 0 || dist < (*it1).getDistance())
{
(*it1).setDistance(dist);
(*it1).setNearest(*it2);
}
if ((*it2).getDistance() == 0 || dist < (*it2).getDistance())
{
(*it2).setDistance(dist);
(*it2).setNearest(*it1);
}
}
for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++)
for (it2 = it1 + 1; it2 != vectEMin.end(); it2++)
{
double dist = (*it1).computeDistanceFrom(*it2);
if ((*it1).getDistance() == 0 || dist < (*it1).getDistance())
{
(*it1).setDistance(dist);
(*it1).setNearest(*it2);
}
if ((*it2).getDistance() == 0 || dist < (*it2).getDistance())
{
(*it2).setDistance(dist);
(*it2).setNearest(*it1);
}
}
// Calculate the window size
double d = MAX(Euclidean::max(vectEMax), Euclidean::max(vectEMin));
int wmax = 2*((int)d/2)+1;
// Order filters with source image
std::vector<float> vectFilterMax, vectFilterMin;
for(int unsigned i = 0; i < vectEMax.size(); i++)
{
float max = 0;
for (int k = vectEMax[i].getX() - ((wmax - 1) / 2); k < vectEMax[i].getX() + ((wmax + 1) / 2); k++)
{
for (int l = vectEMax[i].getY() - ((wmax - 1) / 2); l < vectEMax[i].getY() + ((wmax + 1) / 2); l++)
{
if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
if (input(k, l) > max)
{
max = input(k, l);
}
}
}
}
vectFilterMax.push_back(max);
}
for(int unsigned i = 0; i < vectEMin.size(); i++)
{
float min = 255;
for (int k = vectEMin[i].getX() - ((wmax - 1) / 2); k <= vectEMin[i].getX() + ((wmax + 1) / 2); k++)
{
for (int l = vectEMin[i].getY() - ((wmax - 1) / 2); l < vectEMin[i].getY() + ((wmax + 1) / 2); l++)
{
if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
if (input(k, l) < min) {
min = input(k, l);
}
}
}
}
vectFilterMin.push_back(min);
}
// Calculate the upper envelope
CImg<float> newImgMax(imgMax.width(), imgMax.height());
for(int unsigned i = 0; i < vectEMax.size(); i++)
{
for (int k = vectEMax[i].getX() - ((wmax - 1) / 2); k < vectEMax[i].getX() + ((wmax + 1) / 2); k++)
{
for (int l = vectEMax[i].getY() - ((wmax - 1) / 2); l < vectEMax[i].getY() + ((wmax + 1) / 2); l++)
{
if ((k >= 0 && k < input.width()) && (l >= 0 && l < input.height()))
{
if (imgMax(k, l) == 0)
imgMax(k, l) = vectFilterMax[i];
else
imgMax(k, l) = (int)((imgMax(k, l) + vectFilterMax[i]) / 2);
}
}
}
}
// Smooth of the upper envelope
for (int k = 0; k < input.width(); k++)
{
for (int l = 0; l < input.height(); l++) {
if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
newImgMax(k, l) = (int)sum(imgMax, k, l, wmax) / (wmax * wmax);
}
}
}
// Calculate the lower envelope
CImg<float> newImgMin(imgMin.width(), imgMin.height());
for(int unsigned i = 0; i < vectEMin.size(); i++) {
for (int k = vectEMin[i].getX() - ((wmax - 1) / 2); k < vectEMin[i].getX() + ((wmax + 1) / 2); k++)
{
for (int l = vectEMin[i].getY() - ((wmax - 1) / 2); l < vectEMin[i].getY() + ((wmax + 1) / 2); l++)
{
if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
if( imgMin(k, l) == 0 )
imgMin(k, l) = vectFilterMin[i];
else
imgMin(k, l) = (int)((imgMin(k, l) + vectFilterMin[i]) / 2);
}
}
}
}
// Smooth of the lower envelope
for (int k = 0; k < input.width(); k++)
{
for (int l = 0; l < input.height(); l++)
{
if( (k >= 0 && k < input.width()) && (l >= 0 && l < input.height()) )
{
newImgMin(k, l) = (int)sum(imgMin, k, l, wmax) / (wmax * wmax);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Part 2: Average //
///////////////////////////////////////////////////////////////////////////////
// Calculate the Average
CImg<float> imgMoyenne(input.width(), input.height());
for (int i = 0; i < input.width(); i++)
for (int j = 0; j < input.height(); j++)
imgMoyenne(i, j) = (newImgMin(i, j) + newImgMax(i, j)) /2;
///////////////////////////////////////////////////////////////////////////////
// Partie 3: Deletion //
///////////////////////////////////////////////////////////////////////////////
return input - imgMoyenne;
}
/*******************************************************************************
Main
*******************************************************************************/
int main(int argc, char **argv)
{
char modeTitle[30], residueTitle[50];
double variance = 1000000;
if (argc != 2) {
std::cout << "Usage: ./emd <image>" << std::endl;
return 1;
}
CImgDisplay disp[MAX_ITERATIONS * 2 + 1];
CImg<float> inputImg(argv[1]), imgMode;
disp[0].assign(inputImg, "Source Image");
for (int i = 1; i < MAX_ITERATIONS + 1; i++) {
sprintf(modeTitle, "BEMC-%d", i);
std::cout << "Decomposing " << modeTitle << std::endl;
// Process
imgMode = decompose(inputImg);
inputImg = inputImg - imgMode;
// Display BEMC i
disp[i].assign(imgMode, modeTitle);
// Display residue
sprintf(residueTitle, "Residue %s", modeTitle);
disp[MAX_ITERATIONS + i].assign(inputImg, residueTitle);
// Get variance
std::cout << "Variance: " << inputImg.variance() << std::endl;
if (fabs(variance - inputImg.variance()) < DELTA) {
std::cout << "Ended at iteration " << i << std::endl;
break;
} else {
variance = inputImg.variance();
}
}
while (!disp[0].is_closed()) {
disp[0].wait();
}
return 0;
}