265 lines
9.6 KiB
C++
265 lines
9.6 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
// Empirical Mode Decomposition //
|
|
// BERNARD Guillaume //
|
|
// DURAND William //
|
|
// ZZ3F2 ISIMA //
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "CImg.h"
|
|
#include <math.h>
|
|
#include <vector>
|
|
#include <iostream>
|
|
|
|
#include "Euclidean.hpp"
|
|
|
|
#define MIN(x,y) ((x)<(y)?(x):(y))
|
|
#define MAX(x,y) ((x)>(y)?(x):(y))
|
|
|
|
using namespace cimg_library;
|
|
|
|
double Sum(CImg<unsigned char> img, int startedX, int startedY, int w)
|
|
{
|
|
double res = 0;
|
|
for(int i = startedX; i < startedX + w; i++) {
|
|
for(int j = startedY; j < startedY + w; j++) {
|
|
res = img(i,j);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
Main
|
|
*******************************************************************************/
|
|
int main()
|
|
{
|
|
CImg<unsigned char> imgLena("lena.bmp");
|
|
|
|
CImgDisplay dispBase(imgLena,"Image de base");
|
|
|
|
std::vector<Euclidean> vectEMax, vectEMin;
|
|
std::vector<int> w;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Part 1: Finding minimas and maximas //
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
CImg<unsigned char> imgMax = imgLena.channel(0);
|
|
CImg<unsigned char> imgMin = imgLena.channel(0);
|
|
|
|
for (int i = 0; i<imgLena.width() ; i+=3) {
|
|
for (int j = 0; j<imgLena.height() ; j+=3) {
|
|
|
|
// Save max and min locations
|
|
int xmax = i;
|
|
int ymax = j;
|
|
int xmin = i;
|
|
int ymin = j;
|
|
|
|
// save values
|
|
unsigned char max = imgMax(i,j);
|
|
unsigned char min = imgMin(i,j);
|
|
|
|
Euclidean eMax(i, j);
|
|
Euclidean eMin(i, j);
|
|
|
|
// 3x3
|
|
for (int k = i; k<i+3 ; k++) {
|
|
for (int l = j; l<j+3 ; l++) {
|
|
|
|
// Max
|
|
if ((imgMax(k,l) <= max)&&(l!=ymax &&k!=xmax)) {
|
|
imgMax(k,l) = 0;
|
|
} else {
|
|
max = imgMax(k,l);
|
|
imgMax(xmax,ymax) = 0;
|
|
xmax = k;
|
|
ymax = l;
|
|
|
|
eMax.setX(k);
|
|
eMax.setY(l);
|
|
}
|
|
|
|
// Min
|
|
if ((imgMin(k,l) >= min)&&(l!=ymin &&k!=xmin)) {
|
|
imgMin(k,l) = 0;
|
|
} else {
|
|
min = imgMin(k,l);
|
|
imgMin(xmin,ymin) = 0;
|
|
xmin = k;
|
|
ymin = l;
|
|
|
|
eMin.setX(k);
|
|
eMin.setY(l);
|
|
}
|
|
}
|
|
}
|
|
|
|
vectEMax.push_back(eMax);
|
|
vectEMin.push_back(eMin);
|
|
}
|
|
}
|
|
|
|
// Array of Euclidean distance to the nearest non zero element
|
|
std::vector<Euclidean>::iterator it1, it2;
|
|
|
|
for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++) {
|
|
for (it2 = it1 + 1; it2 != vectEMax.end(); it2++) {
|
|
double dist = (*it1).computeDistanceFrom(*it2);
|
|
|
|
if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) {
|
|
(*it1).setDistance(dist);
|
|
(*it1).setNearest(*it2);
|
|
}
|
|
|
|
if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) {
|
|
(*it2).setDistance(dist);
|
|
(*it2).setNearest(*it1);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++) {
|
|
for (it2 = it1 + 1; it2 != vectEMin.end(); it2++) {
|
|
double dist = (*it1).computeDistanceFrom(*it2);
|
|
|
|
if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) {
|
|
(*it1).setDistance(dist);
|
|
(*it1).setNearest(*it2);
|
|
}
|
|
|
|
if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) {
|
|
(*it2).setDistance(dist);
|
|
(*it2).setNearest(*it1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate the windows sizes
|
|
for(unsigned int i = 0; i < vectEMin.size(); i++) {
|
|
double d1 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance());
|
|
double d2 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance());
|
|
double d3 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance());
|
|
double d4 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance());
|
|
|
|
int wi = (int)ceil(MIN(MIN(d1, d2), MIN(d3, d4)));
|
|
wi = wi % 2 ? wi + 1 : wi;
|
|
w.push_back(wi);
|
|
}
|
|
|
|
CImg<unsigned char> imgSource = imgLena.channel(0);
|
|
|
|
// Order filters with source image
|
|
std::vector<unsigned char> vectFilterMax, vectFilterMin;
|
|
|
|
for(unsigned int i = 0; i < vectEMax.size(); i++) {
|
|
unsigned char max = 0;
|
|
for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) {
|
|
for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) {
|
|
if (imgSource(k, l) > max) {
|
|
max = imgSource(k, l);
|
|
}
|
|
}
|
|
}
|
|
vectFilterMax.push_back(max);
|
|
}
|
|
|
|
for(unsigned int i = 0; i < vectEMin.size(); i++) {
|
|
unsigned char min = 199;
|
|
for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) {
|
|
for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) {
|
|
if (imgSource(k, l) < min) {
|
|
min = imgSource(k, l);
|
|
}
|
|
}
|
|
}
|
|
vectFilterMin.push_back(min);
|
|
}
|
|
|
|
CImg<unsigned char> newImgMax(imgMax.width(), imgMax.height());
|
|
|
|
// Calculate the upper envelope
|
|
for(unsigned int i = 0; i < vectEMax.size(); i++) {
|
|
for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) {
|
|
for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) {
|
|
if( (k == vectEMax[i].getX() && l == vectEMax[i].getY()) || imgMax(k, l) == 0 ) {
|
|
imgMax(k, l) = vectFilterMax[i];
|
|
}
|
|
else {
|
|
imgMax(k, l) = (imgMax(k, l) + vectFilterMax[i]) / 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Smooth of the upper envelope
|
|
for(unsigned int i = 0; i < vectEMax.size(); i++) {
|
|
double sum = Sum(imgMax, vectEMax[i].getX() - ((w[i] + 1) / 2), vectEMax[i].getY() - ((w[i] + 1) / 2), w[i]);
|
|
for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) {
|
|
for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) {
|
|
newImgMax(k, l) = (1./(w[i]*w[i])) * sum;
|
|
std::cout << ((1./(w[i]*w[i])) * sum) << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
CImg<unsigned char> newImgMin(imgMin.width(), imgMin.height());
|
|
|
|
// Calculate the lower envelope
|
|
for(unsigned int i = 0; i < vectEMin.size(); i++) {
|
|
for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) {
|
|
for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) {
|
|
if( (k == vectEMin[i].getX() && l == vectEMin[i].getY()) || imgMin(k, l) == 0 ) {
|
|
imgMin(k, l) = vectFilterMin[i];
|
|
}
|
|
else {
|
|
imgMin(k, l) = (imgMin(k, l) + vectFilterMin[i]) / 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Smooth of the lower envelope
|
|
for(unsigned int i = 0; i < vectEMax.size(); i++) {
|
|
double sum = Sum(imgMin, vectEMin[i].getX() - ((w[i] + 1) / 2), vectEMin[i].getY() - ((w[i] + 1) / 2), w[i]);
|
|
for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) {
|
|
for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) {
|
|
newImgMin(k, l) = (1./(w[i]*w[i])) * sum;
|
|
std::cout << ((1./(w[i]*w[i])) * sum) << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Display images for max and min
|
|
CImgDisplay dispMax(imgMax,"Image de Max");
|
|
CImgDisplay dispMin(imgMin,"Image de Min");
|
|
CImgDisplay dispEMax(newImgMax,"Image de enveloppe Max");
|
|
CImgDisplay dispEMin(newImgMin,"Image de enveloppe Min");
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Part 2: Average //
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Calculate the Average
|
|
CImg<unsigned char> imgMoyenne(imgLena.width(), imgLena.height());
|
|
|
|
for (int i = 0; i<imgLena.width() ; i++) {
|
|
for (int j = 0; j<imgLena.height() ; j++) {
|
|
imgMoyenne(i,j) = (newImgMin(i,j) + newImgMax(i,j)) /2;
|
|
}
|
|
}
|
|
|
|
CImgDisplay dispMoyenne(imgMoyenne,"Image Moyenne");
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Partie 3: Deletion //
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
CImg<unsigned char> imgFin = imgLena - imgMoyenne;
|
|
CImgDisplay dispFin(imgFin,"Image Finale");
|
|
|
|
while (!dispBase.is_closed()) {
|
|
dispBase.wait();
|
|
}
|
|
|
|
return 0;
|
|
} |