EMD/main.cpp
2011-12-06 22:17:12 +01:00

225 lines
7.3 KiB
C++

////////////////////////////////////////////////////////////////////////////////
// Empirical Mode Decomposition //
// BERNARD Guillaume //
// DURAND William //
// ZZ3F2 ISIMA //
////////////////////////////////////////////////////////////////////////////////
#include "CImg.h"
#include <math.h>
#include <vector>
#include "Euclidean.hpp"
#define MIN(x,y) ((x)<(y)?(x):(y))
#define MAX(x,y) ((x)>(y)?(x):(y))
using namespace cimg_library;
/*
double min(std::vector<Euclidean> vect) {
double min = (*vect.begin()).getDistance();
std::vector<Euclidean>::iterator it;
for (it = vect.begin() + 1; it != vect.end(); it++) {
if ((*it).getDistance() < min) {
min = (*it).getDistance();
}
}
return min;
}
double max(std::vector<Euclidean> vect) {
double max = (*vect.begin()).getDistance();
std::vector<Euclidean>::iterator it;
for (it = vect.begin() + 1; it != vect.end(); it++) {
if ((*it).getDistance() > max) {
max = (*it).getDistance();
}
}
return max;
}
*/
/*******************************************************************************
Main
*******************************************************************************/
int main()
{
CImg<unsigned char> imgLena("lena.bmp");
CImgDisplay dispBase(imgLena,"Image de base");
std::vector<Euclidean> vectEMax, vectEMin;
std::vector<int> w;
///////////////////////////////////////////////////////////////////////////////
// Part 1: Finding minimas and maximas //
///////////////////////////////////////////////////////////////////////////////
CImg<unsigned char> imgMax = imgLena.channel(0);
CImg<unsigned char> imgMin = imgLena.channel(0);
imgMax.print();
for (int i = 0; i<imgLena.width() ; i+=3) {
for (int j = 0; j<imgLena.height() ; j+=3) {
// Save max and min locations
int xmax = i;
int ymax = j;
int xmin = i;
int ymin = j;
// save values
unsigned char max = imgMax(i,j);
unsigned char min = imgMin(i,j);
Euclidean eMax(i, j);
Euclidean eMin(i, j);
// 3x3
for (int k = i; k<i+3 ; k++) {
for (int l = j; l<j+3 ; l++) {
// Max
if ((imgMax(k,l) <= max)&&(l!=ymax &&k!=xmax)) {
imgMax(k,l) = 0;
} else {
max = imgMax(k,l);
imgMax(xmax,ymax) = 0;
xmax = k;
ymax = l;
eMax.setX(k);
eMax.setY(l);
}
// Min
if ((imgMin(k,l) >= min)&&(l!=ymin &&k!=xmin)) {
imgMin(k,l) = 0;
} else {
min = imgMin(k,l);
imgMin(xmin,ymin) = 0;
xmin = k;
ymin = l;
eMin.setX(k);
eMin.setY(l);
}
}
}
vectEMax.push_back(eMax);
vectEMin.push_back(eMin);
}
}
// Array of Euclidean distance to the nearest non zero element
std::vector<Euclidean>::iterator it1, it2;
for (it1 = vectEMax.begin(); it1 != vectEMax.end(); it1++) {
for (it2 = it1 + 1; it2 != vectEMax.end(); it2++) {
double dist = (*it1).computeDistanceFrom(*it2);
if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) {
(*it1).setDistance(dist);
(*it1).setNearest(*it2);
}
if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) {
(*it2).setDistance(dist);
(*it2).setNearest(*it1);
}
}
}
for (it1 = vectEMin.begin(); it1 != vectEMin.end(); it1++) {
for (it2 = it1 + 1; it2 != vectEMin.end(); it2++) {
double dist = (*it1).computeDistanceFrom(*it2);
if (0 == (*it1).getDistance() || dist < (*it1).getDistance()) {
(*it1).setDistance(dist);
(*it1).setNearest(*it2);
}
if (0 == (*it2).getDistance() || dist < (*it2).getDistance()) {
(*it2).setDistance(dist);
(*it2).setNearest(*it1);
}
}
}
// Calculate the windows sizes
for(unsigned int i = 0; i < vectEMin.size(); i++) {
double d1 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance());
double d2 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance());
double d3 = MIN(vectEMax[i].getDistance(), vectEMin[i].getDistance());
double d4 = MAX(vectEMax[i].getDistance(), vectEMin[i].getDistance());
int wi = (int)ceil(MIN(MIN(d1, d2), MIN(d3, d4)));
wi = wi % 2 ? wi + 1 : wi;
w.push_back(wi);
}
CImg<unsigned char> imgSource = imgLena.channel(0);
// Order filters with source image
std::vector<unsigned char> vectFilterMax, vectFilterMin;
for(unsigned int i = 0; i < vectEMax.size(); i++) {
unsigned char max = 0;
for (int k = vectEMax[i].getX() - ((w[i] - 1) / 2); k < vectEMax[i].getX() + ((w[i] + 1) / 2); k++) {
for (int l = vectEMax[i].getY() - ((w[i] - 1) / 2); l < vectEMax[i].getY() + ((w[i] + 1) / 2); l++) {
if (imgSource(k, l) > max) {
max = imgSource(k, l);
}
}
}
vectFilterMax.push_back(max);
}
for(unsigned int i = 0; i < vectEMin.size(); i++) {
unsigned char min = 10000000;
for (int k = vectEMin[i].getX() - ((w[i] - 1) / 2); k < vectEMin[i].getX() + ((w[i] + 1) / 2); k++) {
for (int l = vectEMin[i].getY() - ((w[i] - 1) / 2); l < vectEMin[i].getY() + ((w[i] + 1) / 2); l++) {
if (imgSource(k, l) < min) {
min = imgSource(k, l);
}
}
}
vectFilterMin.push_back(min);
}
// Calculate the upper envelope
// Calculate the lower envelope
// Display images for max and min
CImgDisplay dispMax(imgMax,"Image de Max");
CImgDisplay dispMin(imgMin,"Image de Min");
///////////////////////////////////////////////////////////////////////////////
// Part 2: Average //
///////////////////////////////////////////////////////////////////////////////
// Calculate the Average
CImg<unsigned char> imgMoyenne = (imgMax+imgMin)/2;
CImgDisplay dispMoyenne(imgMoyenne,"Image Moyenne");
///////////////////////////////////////////////////////////////////////////////
// Partie 3: Deletion //
///////////////////////////////////////////////////////////////////////////////
CImg<unsigned char> imgFin = imgLena - imgMoyenne;
CImgDisplay dispFin(imgFin,"Image Finale");
while (!dispBase.is_closed()) {
dispBase.wait();
}
return 0;
}