mirror of
https://github.com/ArthurSonzogni/FTXUI.git
synced 2025-09-18 17:18:08 +08:00
Animation (#355)
This commit is contained in:
285
src/ftxui/component/animation.cpp
Normal file
285
src/ftxui/component/animation.cpp
Normal file
@@ -0,0 +1,285 @@
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <cmath> // for sin, pow, sqrt, M_PI_2, M_PI, cos
|
||||
|
||||
#include "ftxui/component/animation.hpp"
|
||||
|
||||
#include <ratio> // for ratio
|
||||
|
||||
namespace ftxui {
|
||||
namespace animation {
|
||||
|
||||
namespace easing {
|
||||
// Easing function have been taken out of:
|
||||
// https://github.com/warrenm/AHEasing/blob/master/AHEasing/easing.c
|
||||
//
|
||||
// Corresponding license:
|
||||
// Copyright (c) 2011, Auerhaus Development, LLC
|
||||
//
|
||||
// This program is free software. It comes without any warranty, to
|
||||
// the extent permitted by applicable law. You can redistribute it
|
||||
// and/or modify it under the terms of the Do What The Fuck You Want
|
||||
// To Public License, Version 2, as published by Sam Hocevar. See
|
||||
// http://sam.zoy.org/wtfpl/COPYING for more details.
|
||||
|
||||
// Modeled after the line y = x
|
||||
float Linear(float p) {
|
||||
return p;
|
||||
}
|
||||
|
||||
// Modeled after the parabola y = x^2
|
||||
float QuadraticIn(float p) {
|
||||
return p * p;
|
||||
}
|
||||
|
||||
// Modeled after the parabola y = -x^2 + 2x
|
||||
float QuadraticOut(float p) {
|
||||
return -(p * (p - 2));
|
||||
}
|
||||
|
||||
// Modeled after the piecewise quadratic
|
||||
// y = (1/2)((2x)^2) ; [0, 0.5)
|
||||
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
|
||||
float QuadraticInOut(float p) {
|
||||
if (p < 0.5) {
|
||||
return 2 * p * p;
|
||||
} else {
|
||||
return (-2 * p * p) + (4 * p) - 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the cubic y = x^3
|
||||
float CubicIn(float p) {
|
||||
return p * p * p;
|
||||
}
|
||||
|
||||
// Modeled after the cubic y = (x - 1)^3 + 1
|
||||
float CubicOut(float p) {
|
||||
float f = (p - 1);
|
||||
return f * f * f + 1;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise cubic
|
||||
// y = (1/2)((2x)^3) ; [0, 0.5)
|
||||
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
|
||||
float CubicInOut(float p) {
|
||||
if (p < 0.5) {
|
||||
return 4 * p * p * p;
|
||||
} else {
|
||||
float f = ((2 * p) - 2);
|
||||
return 0.5 * f * f * f + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the quartic x^4
|
||||
float QuarticIn(float p) {
|
||||
return p * p * p * p;
|
||||
}
|
||||
|
||||
// Modeled after the quartic y = 1 - (x - 1)^4
|
||||
float QuarticOut(float p) {
|
||||
float f = (p - 1);
|
||||
return f * f * f * (1 - p) + 1;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise quartic
|
||||
// y = (1/2)((2x)^4) ; [0, 0.5)
|
||||
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
|
||||
float QuarticInOut(float p) {
|
||||
if (p < 0.5) {
|
||||
return 8 * p * p * p * p;
|
||||
} else {
|
||||
float f = (p - 1);
|
||||
return -8 * f * f * f * f + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the quintic y = x^5
|
||||
float QuinticIn(float p) {
|
||||
return p * p * p * p * p;
|
||||
}
|
||||
|
||||
// Modeled after the quintic y = (x - 1)^5 + 1
|
||||
float QuinticOut(float p) {
|
||||
float f = (p - 1);
|
||||
return f * f * f * f * f + 1;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise quintic
|
||||
// y = (1/2)((2x)^5) ; [0, 0.5)
|
||||
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
|
||||
float QuinticInOut(float p) {
|
||||
if (p < 0.5) {
|
||||
return 16 * p * p * p * p * p;
|
||||
} else {
|
||||
float f = ((2 * p) - 2);
|
||||
return 0.5 * f * f * f * f * f + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after quarter-cycle of sine wave
|
||||
float SineIn(float p) {
|
||||
return sin((p - 1) * M_PI_2) + 1;
|
||||
}
|
||||
|
||||
// Modeled after quarter-cycle of sine wave (different phase)
|
||||
float SineOut(float p) {
|
||||
return sin(p * M_PI_2);
|
||||
}
|
||||
|
||||
// Modeled after half sine wave
|
||||
float SineInOut(float p) {
|
||||
return 0.5 * (1 - cos(p * M_PI));
|
||||
}
|
||||
|
||||
// Modeled after shifted quadrant IV of unit circle
|
||||
float CircularIn(float p) {
|
||||
return 1 - sqrt(1 - (p * p));
|
||||
}
|
||||
|
||||
// Modeled after shifted quadrant II of unit circle
|
||||
float CircularOut(float p) {
|
||||
return sqrt((2 - p) * p);
|
||||
}
|
||||
|
||||
// Modeled after the piecewise circular function
|
||||
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
|
||||
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
|
||||
float CircularInOut(float p) {
|
||||
if (p < 0.5) {
|
||||
return 0.5 * (1 - sqrt(1 - 4 * (p * p)));
|
||||
} else {
|
||||
return 0.5 * (sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the exponential function y = 2^(10(x - 1))
|
||||
float ExponentialIn(float p) {
|
||||
return (p == 0.0) ? p : pow(2, 10 * (p - 1));
|
||||
}
|
||||
|
||||
// Modeled after the exponential function y = -2^(-10x) + 1
|
||||
float ExponentialOut(float p) {
|
||||
return (p == 1.0) ? p : 1 - pow(2, -10 * p);
|
||||
}
|
||||
|
||||
// Modeled after the piecewise exponential
|
||||
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
|
||||
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
|
||||
float ExponentialInOut(float p) {
|
||||
if (p == 0.0 || p == 1.0)
|
||||
return p;
|
||||
|
||||
if (p < 0.5) {
|
||||
return 0.5 * pow(2, (20 * p) - 10);
|
||||
} else {
|
||||
return -0.5 * pow(2, (-20 * p) + 10) + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
|
||||
float ElasticIn(float p) {
|
||||
return sin(13 * M_PI_2 * p) * pow(2, 10 * (p - 1));
|
||||
}
|
||||
|
||||
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) +
|
||||
// 1
|
||||
float ElasticOut(float p) {
|
||||
return sin(-13 * M_PI_2 * (p + 1)) * pow(2, -10 * p) + 1;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise exponentially-damped sine wave:
|
||||
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
|
||||
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
|
||||
float ElasticInOut(float p) {
|
||||
if (p < 0.5) {
|
||||
return 0.5 * sin(13 * M_PI_2 * (2 * p)) * pow(2, 10 * ((2 * p) - 1));
|
||||
} else {
|
||||
return 0.5 *
|
||||
(sin(-13 * M_PI_2 * ((2 * p - 1) + 1)) * pow(2, -10 * (2 * p - 1)) +
|
||||
2);
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
|
||||
float BackIn(float p) {
|
||||
return p * p * p - p * sin(p * M_PI);
|
||||
}
|
||||
|
||||
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
|
||||
float BackOut(float p) {
|
||||
float f = (1 - p);
|
||||
return 1 - (f * f * f - f * sin(f * M_PI));
|
||||
}
|
||||
|
||||
// Modeled after the piecewise overshooting cubic function:
|
||||
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
|
||||
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
|
||||
float BackInOut(float p) {
|
||||
if (p < 0.5) {
|
||||
float f = 2 * p;
|
||||
return 0.5 * (f * f * f - f * sin(f * M_PI));
|
||||
} else {
|
||||
float f = (1 - (2 * p - 1));
|
||||
return 0.5 * (1 - (f * f * f - f * sin(f * M_PI))) + 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
float BounceIn(float p) {
|
||||
return 1 - BounceOut(1 - p);
|
||||
}
|
||||
|
||||
float BounceOut(float p) {
|
||||
if (p < 4 / 11.0) {
|
||||
return (121 * p * p) / 16.0;
|
||||
} else if (p < 8 / 11.0) {
|
||||
return (363 / 40.0 * p * p) - (99 / 10.0 * p) + 17 / 5.0;
|
||||
} else if (p < 9 / 10.0) {
|
||||
return (4356 / 361.0 * p * p) - (35442 / 1805.0 * p) + 16061 / 1805.0;
|
||||
} else {
|
||||
return (54 / 5.0 * p * p) - (513 / 25.0 * p) + 268 / 25.0;
|
||||
}
|
||||
}
|
||||
|
||||
float BounceInOut(float p) {
|
||||
if (p < 0.5) {
|
||||
return 0.5 * BounceIn(p * 2);
|
||||
} else {
|
||||
return 0.5 * BounceOut(p * 2 - 1) + 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace easing
|
||||
|
||||
Animator::Animator(float* from,
|
||||
float to,
|
||||
Duration duration,
|
||||
easing::Function easing_function,
|
||||
Duration delay)
|
||||
: value_(from),
|
||||
from_(*from),
|
||||
to_(to),
|
||||
duration_(duration),
|
||||
easing_function_(easing_function),
|
||||
current_(-delay) {
|
||||
RequestAnimationFrame();
|
||||
}
|
||||
|
||||
void Animator::OnAnimation(Params& params) {
|
||||
current_ += params.duration();
|
||||
|
||||
if (current_ >= duration_) {
|
||||
*value_ = to_;
|
||||
return;
|
||||
}
|
||||
|
||||
if (current_ <= Duration()) {
|
||||
*value_ = from_;
|
||||
} else {
|
||||
*value_ = from_ + (to_ - from_) * easing_function_(current_ / duration_);
|
||||
}
|
||||
|
||||
RequestAnimationFrame();
|
||||
}
|
||||
|
||||
} // namespace animation
|
||||
} // namespace ftxui
|
Reference in New Issue
Block a user