mirror of
				https://github.com/ArthurSonzogni/FTXUI.git
				synced 2025-10-31 18:48:11 +08:00 
			
		
		
		
	Update float style in animation.cpp (#607)
Partially taken out of: https://github.com/ArthurSonzogni/FTXUI/pull/600 Co-authored-by: LostInCompilation <12819635+LostInCompilation@users.noreply.github.com>
This commit is contained in:
		| @@ -18,7 +18,7 @@ void RequestAnimationFrame(); | ||||
|  | ||||
| using Clock = std::chrono::steady_clock; | ||||
| using TimePoint = std::chrono::time_point<Clock>; | ||||
| using Duration = std::chrono::duration<double>; | ||||
| using Duration = std::chrono::duration<float>; | ||||
|  | ||||
| // Parameter of Component::OnAnimation(param). | ||||
| class Params { | ||||
|   | ||||
| @@ -9,8 +9,8 @@ namespace ftxui::animation { | ||||
| namespace easing { | ||||
|  | ||||
| namespace { | ||||
| constexpr float kPi = 3.14159265358979323846F; | ||||
| constexpr float kPi2 = kPi / 2.F; | ||||
| constexpr float kPi = 3.14159265358979323846f; | ||||
| constexpr float kPi2 = kPi / 2.f; | ||||
| }  // namespace | ||||
|  | ||||
| // Easing function have been taken out of: | ||||
| @@ -37,18 +37,16 @@ float QuadraticIn(float p) { | ||||
|  | ||||
| // Modeled after the parabola y = -x^2 + 2x | ||||
| float QuadraticOut(float p) { | ||||
|   return -(p * (p - 2)); | ||||
|   return -(p * (p - 2.f)); | ||||
| } | ||||
|  | ||||
| // Modeled after the piecewise quadratic | ||||
| // y = (1/2)((2x)^2)             ; [0, 0.5) | ||||
| // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] | ||||
| float QuadraticInOut(float p) { | ||||
|   if (p < 0.5F) {  // NOLINT | ||||
|     return 2 * p * p; | ||||
|   } else { | ||||
|     return (-2 * p * p) + (4 * p) - 1; | ||||
|   } | ||||
|   return p < 0.5f                                 // NOLINT | ||||
|              ? 2.f * p * p                        // NOLINT | ||||
|              : (-2.f * p * p) + (4.f * p) - 1.f;  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after the cubic y = x^3 | ||||
| @@ -58,20 +56,19 @@ float CubicIn(float p) { | ||||
|  | ||||
| // Modeled after the cubic y = (x - 1)^3 + 1 | ||||
| float CubicOut(float p) { | ||||
|   const float f = (p - 1); | ||||
|   return f * f * f + 1; | ||||
|   const float f = (p - 1.f); | ||||
|   return f * f * f + 1.f; | ||||
| } | ||||
|  | ||||
| // Modeled after the piecewise cubic | ||||
| // y = (1/2)((2x)^3)       ; [0, 0.5) | ||||
| // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] | ||||
| float CubicInOut(float p) { | ||||
|   if (p < 0.5F) {  // NOLINT | ||||
|     return 4 * p * p * p; | ||||
|   } else { | ||||
|     const float f = ((2 * p) - 2); | ||||
|     return 0.5F * f * f * f + 1;  // NOLINT | ||||
|   if (p < 0.5f) {  // NOLINT | ||||
|     return 4.f * p * p * p; | ||||
|   } | ||||
|   const float f = ((2.f * p) - 2.f); | ||||
|   return 0.5f * f * f * f + 1.f;  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after the quartic x^4 | ||||
| @@ -81,20 +78,19 @@ float QuarticIn(float p) { | ||||
|  | ||||
| // Modeled after the quartic y = 1 - (x - 1)^4 | ||||
| float QuarticOut(float p) { | ||||
|   const float f = (p - 1); | ||||
|   return f * f * f * (1 - p) + 1; | ||||
|   const float f = (p - 1.f); | ||||
|   return f * f * f * (1.f - p) + 1.f; | ||||
| } | ||||
|  | ||||
| // Modeled after the piecewise quartic | ||||
| // y = (1/2)((2x)^4)        ; [0, 0.5) | ||||
| // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] | ||||
| float QuarticInOut(float p) { | ||||
|   if (p < 0.5F) {              // NOLINT | ||||
|     return 8 * p * p * p * p;  // NOLINT | ||||
|   } else { | ||||
|     const float f = (p - 1); | ||||
|     return -8 * f * f * f * f + 1;  // NOLINT | ||||
|   if (p < 0.5f) {                // NOLINT | ||||
|     return 8.f * p * p * p * p;  // NOLINT | ||||
|   } | ||||
|   const float f = (p - 1.f); | ||||
|   return -8.f * f * f * f * f + 1.f;  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after the quintic y = x^5 | ||||
| @@ -104,25 +100,24 @@ float QuinticIn(float p) { | ||||
|  | ||||
| // Modeled after the quintic y = (x - 1)^5 + 1 | ||||
| float QuinticOut(float p) { | ||||
|   const float f = (p - 1); | ||||
|   return f * f * f * f * f + 1; | ||||
|   const float f = (p - 1.f); | ||||
|   return f * f * f * f * f + 1.f; | ||||
| } | ||||
|  | ||||
| // Modeled after the piecewise quintic | ||||
| // y = (1/2)((2x)^5)       ; [0, 0.5) | ||||
| // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] | ||||
| float QuinticInOut(float p) { | ||||
|   if (p < 0.5F) {                        // NOLINT | ||||
|     return 16 * p * p * p * p * p;       // NOLINT | ||||
|   } else {                               // NOLINT | ||||
|     float f = ((2 * p) - 2);             // NOLINT | ||||
|     return 0.5 * f * f * f * f * f + 1;  // NOLINT | ||||
|   if (p < 0.5f) {                     // NOLINT | ||||
|     return 16.f * p * p * p * p * p;  // NOLINT | ||||
|   } | ||||
|   float f = ((2.f * p) - 2.f);            // NOLINT | ||||
|   return 0.5f * f * f * f * f * f + 1.f;  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after quarter-cycle of sine wave | ||||
| float SineIn(float p) { | ||||
|   return std::sin((p - 1) * kPi2) + 1; | ||||
|   return std::sin((p - 1.f) * kPi2) + 1.f; | ||||
| } | ||||
|  | ||||
| // Modeled after quarter-cycle of sine wave (different phase) | ||||
| @@ -132,79 +127,77 @@ float SineOut(float p) { | ||||
|  | ||||
| // Modeled after half sine wave | ||||
| float SineInOut(float p) { | ||||
|   return 0.5F * (1 - std::cos(p * kPi));  // NOLINT | ||||
|   return 0.5f * (1.f - std::cos(p * kPi));  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after shifted quadrant IV of unit circle | ||||
| float CircularIn(float p) { | ||||
|   return 1 - std::sqrt(1 - (p * p)); | ||||
|   return 1.f - std::sqrt(1.f - (p * p)); | ||||
| } | ||||
|  | ||||
| // Modeled after shifted quadrant II of unit circle | ||||
| float CircularOut(float p) { | ||||
|   return std::sqrt((2 - p) * p); | ||||
|   return std::sqrt((2.f - p) * p); | ||||
| } | ||||
|  | ||||
| // Modeled after the piecewise circular function | ||||
| // y = (1/2)(1 - sqrt(1 - 4x^2))           ; [0, 0.5) | ||||
| // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] | ||||
| float CircularInOut(float p) { | ||||
|   if (p < 0.5F) {                                    // NOLINT | ||||
|     return 0.5F * (1 - std::sqrt(1 - 4 * (p * p)));  // NOLINT | ||||
|   } else { | ||||
|     return 0.5F * (std::sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);  // NOLINT | ||||
|   if (p < 0.5f) {                                          // NOLINT | ||||
|     return 0.5f * (1.f - std::sqrt(1.f - 4.f * (p * p)));  // NOLINT | ||||
|   } | ||||
|   // NOLINTNEXTLINE | ||||
|   return 0.5f * (std::sqrt(-((2.f * p) - 3.f) * ((2.f * p) - 1.f)) + 1.f); | ||||
| } | ||||
|  | ||||
| // Modeled after the exponential function y = 2^(10(x - 1)) | ||||
| float ExponentialIn(float p) { | ||||
|   return (p == 0.0) ? p : std::pow(2, 10 * (p - 1));  // NOLINT | ||||
|   return (p == 0.f) ? p : std::pow(2.f, 10.f * (p - 1.f));  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after the exponential function y = -2^(-10x) + 1 | ||||
| float ExponentialOut(float p) { | ||||
|   return (p == 1.0) ? p : 1 - std::pow(2, -10 * p);  // NOLINT | ||||
|   return (p == 1.f) ? p : 1.f - std::pow(2.f, -10.f * p);  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after the piecewise exponential | ||||
| // y = (1/2)2^(10(2x - 1))         ; [0,0.5) | ||||
| // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] | ||||
| float ExponentialInOut(float p) { | ||||
|   if (p == 0.0 || p == 1.F) { | ||||
|   if (p == 0.f || p == 1.f) { | ||||
|     return p; | ||||
|   } | ||||
|  | ||||
|   if (p < 0.5F) {                                   // NOLINT | ||||
|     return 0.5 * std::pow(2, (20 * p) - 10);        // NOLINT | ||||
|   } else {                                          // NOLINT | ||||
|     return -0.5 * std::pow(2, (-20 * p) + 10) + 1;  // NOLINT | ||||
|   if (p < 0.5f) {                                            // NOLINT | ||||
|     return 0.5f * std::pow(2.f, (20.f * p) - 10.f);          // NOLINT | ||||
|   } | ||||
|   return -0.5f * std::pow(2.f, (-20.f * p) + 10.f) + 1.f;  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) | ||||
| float ElasticIn(float p) { | ||||
|   return std::sin(13.F * kPi2 * p) * std::pow(2.F, 10.F * (p - 1));  // NOLINT | ||||
|   return std::sin(13.f * kPi2 * p) * std::pow(2.f, 10.f * (p - 1.f));  // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + | ||||
| // 1 | ||||
| float ElasticOut(float p) { | ||||
|   // NOLINTNEXTLINE | ||||
|   return std::sin(-13.F * kPi2 * (p + 1)) * std::pow(2.F, -10.F * p) + 1; | ||||
|   return std::sin(-13.f * kPi2 * (p + 1.f)) * std::pow(2.f, -10.f * p) + 1.f; | ||||
| } | ||||
|  | ||||
| // Modeled after the piecewise exponentially-damped sine wave: | ||||
| // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1))      ; [0,0.5) | ||||
| // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] | ||||
| float ElasticInOut(float p) { | ||||
|   if (p < 0.5F) {                                               // NOLINT | ||||
|     return 0.5 * std::sin(13.F * kPi2 * (2 * p)) *              // NOLINT | ||||
|            std::pow(2, 10 * ((2 * p) - 1));                     // NOLINT | ||||
|   } else {                                                      // NOLINT | ||||
|     return 0.5 * (std::sin(-13.F * kPi2 * ((2 * p - 1) + 1)) *  // NOLINT | ||||
|                       std::pow(2, -10 * (2 * p - 1)) +          // NOLINT | ||||
|                   2);                                           // NOLINT | ||||
|   if (p < 0.5f) {                                      // NOLINT | ||||
|     return 0.5f * std::sin(13.f * kPi2 * (2.f * p)) *  // NOLINT | ||||
|            std::pow(2.f, 10.f * ((2.f * p) - 1.f));    // NOLINT | ||||
|   } | ||||
|   return 0.5f * (std::sin(-13.f * kPi2 * ((2.f * p - 1.f) + 1.f)) *  // NOLINT | ||||
|                      std::pow(2.f, -10.f * (2.f * p - 1.f)) +        // NOLINT | ||||
|                  2.f);                                               // NOLINT | ||||
| } | ||||
|  | ||||
| // Modeled after the overshooting cubic y = x^3-x*sin(x*pi) | ||||
| @@ -214,46 +207,48 @@ float BackIn(float p) { | ||||
|  | ||||
| // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi)) | ||||
| float BackOut(float p) { | ||||
|   const float f = (1 - p); | ||||
|   return 1 - (f * f * f - f * std::sin(f * kPi)); | ||||
|   const float f = (1.f - p); | ||||
|   return 1.f - (f * f * f - f * std::sin(f * kPi)); | ||||
| } | ||||
|  | ||||
| // Modeled after the piecewise overshooting cubic function: | ||||
| // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi))           ; [0, 0.5) | ||||
| // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1] | ||||
| float BackInOut(float p) { | ||||
|   if (p < 0.5F) {  // NOLINT | ||||
|     const float f = 2 * p; | ||||
|     return 0.5F * (f * f * f - f * std::sin(f * kPi));  // NOLINT | ||||
|   } else { | ||||
|     float f = (1 - (2 * p - 1));                                    // NOLINT | ||||
|     return 0.5F * (1 - (f * f * f - f * std::sin(f * kPi))) + 0.5;  // NOLINT | ||||
|   if (p < 0.5f) {  // NOLINT | ||||
|     const float f = 2.f * p; | ||||
|     return 0.5f * (f * f * f - f * std::sin(f * kPi));  // NOLINT | ||||
|   } | ||||
|   const float f = (1.f - (2.f * p - 1.f));                           // NOLINT | ||||
|   return 0.5f * (1.f - (f * f * f - f * std::sin(f * kPi))) + 0.5f;  // NOLINT | ||||
| } | ||||
|  | ||||
| float BounceIn(float p) { | ||||
|   return 1 - BounceOut(1 - p); | ||||
|   return 1.f - BounceOut(1.f - p); | ||||
| } | ||||
|  | ||||
| float BounceOut(float p) { | ||||
|   if (p < 4 / 11.0) {                                           // NOLINT | ||||
|     return (121 * p * p) / 16.0;                                // NOLINT | ||||
|   } else if (p < 8 / 11.0) {                                    // NOLINT | ||||
|     return (363 / 40.0 * p * p) - (99 / 10.0 * p) + 17 / 5.0;   // NOLINT | ||||
|   } else if (p < 9 / 10.0) {                                    // NOLINT | ||||
|     return (4356 / 361.0 * p * p) - (35442 / 1805.0 * p) +      // NOLINT | ||||
|            16061 / 1805.0;                                      // NOLINT | ||||
|   } else {                                                      // NOLINT | ||||
|     return (54 / 5.0 * p * p) - (513 / 25.0 * p) + 268 / 25.0;  // NOLINT | ||||
|   if (p < 4.f / 11.f) {             // NOLINT | ||||
|     return (121.f * p * p) / 16.f;  // NOLINT | ||||
|   } | ||||
|  | ||||
|   if (p < 8.f / 11.f) {                                              // NOLINT | ||||
|     return (363.f / 40.f * p * p) - (99.f / 10.f * p) + 17.f / 5.f;  // NOLINT | ||||
|   } | ||||
|  | ||||
|   if (p < 9.f / 10.f) {                                         // NOLINT | ||||
|     return (4356.f / 361.f * p * p) - (35442.f / 1805.f * p) +  // NOLINT | ||||
|            16061.f / 1805.f;                                    // NOLINT | ||||
|   } | ||||
|  | ||||
|   return (54.f / 5.f * p * p) - (513 / 25.f * p) + 268 / 25.f;  // NOLINT | ||||
| } | ||||
|  | ||||
| float BounceInOut(float p) {          // NOLINT | ||||
|   if (p < 0.5F) {                               // NOLINT | ||||
|     return 0.5F * BounceIn(p * 2);              // NOLINT | ||||
|   } else {                                      // NOLINT | ||||
|     return 0.5F * BounceOut(p * 2 - 1) + 0.5F;  // NOLINT | ||||
|   if (p < 0.5f) {                     // NOLINT | ||||
|     return 0.5f * BounceIn(p * 2.f);  // NOLINT | ||||
|   } | ||||
|   return 0.5f * BounceOut(p * 2.f - 1.f) + 0.5f;  // NOLINT | ||||
| } | ||||
|  | ||||
| }  // namespace easing | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Arthur Sonzogni
					Arthur Sonzogni