#include // for sin, pow, sqrt, cos #include // for ratio #include // for move #include "ftxui/component/animation.hpp" // NOLINTBEGIN(*-magic-numbers) namespace ftxui::animation { namespace easing { namespace { constexpr float kPi = 3.14159265358979323846f; constexpr float kPi2 = kPi / 2.f; } // namespace // Easing function have been taken out of: // https://github.com/warrenm/AHEasing/blob/master/AHEasing/easing.c // // Corresponding license: // Copyright (c) 2011, Auerhaus Development, LLC // // This program is free software. It comes without any warranty, to // the extent permitted by applicable law. You can redistribute it // and/or modify it under the terms of the Do What The Fuck You Want // To Public License, Version 2, as published by Sam Hocevar. See // http://sam.zoy.org/wtfpl/COPYING for more details. // Modeled after the line y = x float Linear(float p) { return p; } // Modeled after the parabola y = x^2 float QuadraticIn(float p) { return p * p; } // Modeled after the parabola y = -x^2 + 2x float QuadraticOut(float p) { return -(p * (p - 2.f)); } // Modeled after the piecewise quadratic // y = (1/2)((2x)^2) ; [0, 0.5) // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] float QuadraticInOut(float p) { return p < 0.5f ? 2.f * p * p : (-2.f * p * p) + (4.f * p) - 1.f; } // Modeled after the cubic y = x^3 float CubicIn(float p) { return p * p * p; } // Modeled after the cubic y = (x - 1)^3 + 1 float CubicOut(float p) { const float f = (p - 1.f); return f * f * f + 1.f; } // Modeled after the piecewise cubic // y = (1/2)((2x)^3) ; [0, 0.5) // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] float CubicInOut(float p) { if (p < 0.5f) { return 4.f * p * p * p; } const float f = ((2.f * p) - 2.f); return 0.5f * f * f * f + 1.f; } // Modeled after the quartic x^4 float QuarticIn(float p) { return p * p * p * p; } // Modeled after the quartic y = 1 - (x - 1)^4 float QuarticOut(float p) { const float f = (p - 1.f); return f * f * f * (1.f - p) + 1.f; } // Modeled after the piecewise quartic // y = (1/2)((2x)^4) ; [0, 0.5) // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] float QuarticInOut(float p) { if (p < 0.5f) { return 8.f * p * p * p * p; } const float f = (p - 1.f); return -8.f * f * f * f * f + 1.f; } // Modeled after the quintic y = x^5 float QuinticIn(float p) { return p * p * p * p * p; } // Modeled after the quintic y = (x - 1)^5 + 1 float QuinticOut(float p) { const float f = (p - 1.f); return f * f * f * f * f + 1.f; } // Modeled after the piecewise quintic // y = (1/2)((2x)^5) ; [0, 0.5) // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] float QuinticInOut(float p) { if (p < 0.5f) { return 16.f * p * p * p * p * p; } const float f = ((2.f * p) - 2.f); return 0.5f * f * f * f * f * f + 1.f; } // Modeled after quarter-cycle of sine wave float SineIn(float p) { return std::sin((p - 1.f) * kPi2) + 1.f; } // Modeled after quarter-cycle of sine wave (different phase) float SineOut(float p) { return std::sin(p * kPi2); } // Modeled after half sine wave float SineInOut(float p) { return 0.5f * (1.f - std::cos(p * kPi)); } // Modeled after shifted quadrant IV of unit circle float CircularIn(float p) { return 1.f - std::sqrt(1.f - (p * p)); } // Modeled after shifted quadrant II of unit circle float CircularOut(float p) { return std::sqrt((2.f - p) * p); } // Modeled after the piecewise circular function // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5) // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] float CircularInOut(float p) { if (p < 0.5f) { return 0.5f * (1.f - std::sqrt(1.f - 4.f * (p * p))); } return 0.5f * (std::sqrt(-((2.f * p) - 3.f) * ((2.f * p) - 1.f)) + 1.f); } // Modeled after the exponential function y = 2^(10(x - 1)) float ExponentialIn(float p) { return (p == 0.f) ? p : std::pow(2.f, 10.f * (p - 1.f)); } // Modeled after the exponential function y = -2^(-10x) + 1 float ExponentialOut(float p) { return (p == 1.f) ? p : 1.f - std::pow(2.f, -10.f * p); } // Modeled after the piecewise exponential // y = (1/2)2^(10(2x - 1)) ; [0,0.5) // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] float ExponentialInOut(float p) { if (p == 0.f || p == 1.f) { return p; } if (p < 0.5f) { return 0.5f * std::pow(2.f, (20.f * p) - 10.f); } return -0.5f * std::pow(2.f, (-20.f * p) + 10.f) + 1.f; } // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) float ElasticIn(float p) { return std::sin(13.f * kPi2 * p) * std::pow(2.f, 10.f * (p - 1.f)); } // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + // 1 float ElasticOut(float p) { return std::sin(-13.f * kPi2 * (p + 1.f)) * std::pow(2.f, -10.f * p) + 1.f; } // Modeled after the piecewise exponentially-damped sine wave: // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5) // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] float ElasticInOut(float p) { if (p < 0.5f) { return 0.5f * std::sin(13.f * kPi2 * (2.f * p)) * std::pow(2.f, 10.f * ((2.f * p) - 1.f)); } return 0.5f * (std::sin(-13.f * kPi2 * ((2.f * p - 1.f) + 1.f)) * std::pow(2.f, -10.f * (2.f * p - 1.f)) + 2.f); } // Modeled after the overshooting cubic y = x^3-x*sin(x*pi) float BackIn(float p) { return p * p * p - p * std::sin(p * kPi); } // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi)) float BackOut(float p) { const float f = (1.f - p); return 1.f - (f * f * f - f * std::sin(f * kPi)); } // Modeled after the piecewise overshooting cubic function: // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5) // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1] float BackInOut(float p) { if (p < 0.5f) { const float f = 2.f * p; return 0.5f * (f * f * f - f * std::sin(f * kPi)); } const float f = (1.f - (2.f * p - 1.f)); return 0.5f * (1.f - (f * f * f - f * std::sin(f * kPi))) + 0.5f; } float BounceIn(float p) { return 1.f - BounceOut(1.f - p); } float BounceOut(float p) { if (p < 4.f / 11.f) { return (121.f * p * p) / 16.f; } if (p < 8.f / 11.f) { return (363.f / 40.f * p * p) - (99.f / 10.f * p) + 17.f / 5.f; } if (p < 9.f / 10.f) { return (4356.f / 361.f * p * p) - (35442.f / 1805.f * p) + 16061.f / 1805.f; } return (54.f / 5.f * p * p) - (513 / 25.f * p) + 268 / 25.f; } float BounceInOut(float p) { if (p < 0.5f) { return 0.5f * BounceIn(p * 2.f); } return 0.5f * BounceOut(p * 2.f - 1.f) + 0.5f; } } // namespace easing Animator::Animator(float* from, float to, Duration duration, easing::Function easing_function, Duration delay) : value_(from), from_(*from), to_(to), duration_(duration), easing_function_(std::move(easing_function)), current_(-delay) { RequestAnimationFrame(); } void Animator::OnAnimation(Params& params) { current_ += params.duration(); if (current_ >= duration_) { *value_ = to_; return; } if (current_ <= Duration()) { *value_ = from_; } else { *value_ = from_ + (to_ - from_) * easing_function_(current_ / duration_); } RequestAnimationFrame(); } } // namespace ftxui::animation // NOLINTEND(*-magic-numbers)