#include // IWYU pragma: keep #include // for ratio #include // for move #include "ftxui/component/animation.hpp" namespace ftxui::animation { namespace easing { namespace { constexpr float kPi = 3.14159265358979323846F; constexpr float kPi2 = kPi / 2.F; } // namespace // Easing function have been taken out of: // https://github.com/warrenm/AHEasing/blob/master/AHEasing/easing.c // // Corresponding license: // Copyright (c) 2011, Auerhaus Development, LLC // // This program is free software. It comes without any warranty, to // the extent permitted by applicable law. You can redistribute it // and/or modify it under the terms of the Do What The Fuck You Want // To Public License, Version 2, as published by Sam Hocevar. See // http://sam.zoy.org/wtfpl/COPYING for more details. // Modeled after the line y = x float Linear(float p) { return p; } // Modeled after the parabola y = x^2 float QuadraticIn(float p) { return p * p; } // Modeled after the parabola y = -x^2 + 2x float QuadraticOut(float p) { return -(p * (p - 2)); } // Modeled after the piecewise quadratic // y = (1/2)((2x)^2) ; [0, 0.5) // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] float QuadraticInOut(float p) { if (p < 0.5F) { // NOLINT return 2 * p * p; } else { return (-2 * p * p) + (4 * p) - 1; } } // Modeled after the cubic y = x^3 float CubicIn(float p) { return p * p * p; } // Modeled after the cubic y = (x - 1)^3 + 1 float CubicOut(float p) { float f = (p - 1); return f * f * f + 1; } // Modeled after the piecewise cubic // y = (1/2)((2x)^3) ; [0, 0.5) // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] float CubicInOut(float p) { if (p < 0.5F) { // NOLINT return 4 * p * p * p; } else { float f = ((2 * p) - 2); return 0.5F * f * f * f + 1; // NOLINT } } // Modeled after the quartic x^4 float QuarticIn(float p) { return p * p * p * p; } // Modeled after the quartic y = 1 - (x - 1)^4 float QuarticOut(float p) { float f = (p - 1); return f * f * f * (1 - p) + 1; } // Modeled after the piecewise quartic // y = (1/2)((2x)^4) ; [0, 0.5) // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] float QuarticInOut(float p) { if (p < 0.5F) { // NOLINT return 8 * p * p * p * p; // NOLINT } else { float f = (p - 1); return -8 * f * f * f * f + 1; // NOLINT } } // Modeled after the quintic y = x^5 float QuinticIn(float p) { return p * p * p * p * p; } // Modeled after the quintic y = (x - 1)^5 + 1 float QuinticOut(float p) { float f = (p - 1); return f * f * f * f * f + 1; } // Modeled after the piecewise quintic // y = (1/2)((2x)^5) ; [0, 0.5) // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] float QuinticInOut(float p) { if (p < 0.5F) { // NOLINT return 16 * p * p * p * p * p; // NOLINT } else { // NOLINT float f = ((2 * p) - 2); // NOLINT return 0.5 * f * f * f * f * f + 1; // NOLINT } } // Modeled after quarter-cycle of sine wave float SineIn(float p) { return std::sin((p - 1) * kPi2) + 1; } // Modeled after quarter-cycle of sine wave (different phase) float SineOut(float p) { return std::sin(p * kPi2); } // Modeled after half sine wave float SineInOut(float p) { return 0.5F * (1 - std::cos(p * kPi)); // NOLINT } // Modeled after shifted quadrant IV of unit circle float CircularIn(float p) { return 1 - std::sqrt(1 - (p * p)); } // Modeled after shifted quadrant II of unit circle float CircularOut(float p) { return std::sqrt((2 - p) * p); } // Modeled after the piecewise circular function // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5) // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] float CircularInOut(float p) { if (p < 0.5F) { // NOLINT return 0.5F * (1 - std::sqrt(1 - 4 * (p * p))); // NOLINT } else { return 0.5F * (std::sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1); // NOLINT } } // Modeled after the exponential function y = 2^(10(x - 1)) float ExponentialIn(float p) { return (p == 0.0) ? p : std::pow(2, 10 * (p - 1)); // NOLINT } // Modeled after the exponential function y = -2^(-10x) + 1 float ExponentialOut(float p) { return (p == 1.0) ? p : 1 - std::pow(2, -10 * p); // NOLINT } // Modeled after the piecewise exponential // y = (1/2)2^(10(2x - 1)) ; [0,0.5) // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] float ExponentialInOut(float p) { if (p == 0.0 || p == 1.F) { return p; } if (p < 0.5F) { // NOLINT return 0.5 * std::pow(2, (20 * p) - 10); // NOLINT } else { // NOLINT return -0.5 * std::pow(2, (-20 * p) + 10) + 1; // NOLINT } } // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) float ElasticIn(float p) { return std::sin(13.F * kPi2 * p) * std::pow(2.F, 10.F * (p - 1)); // NOLINT } // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + // 1 float ElasticOut(float p) { // NOLINTNEXTLINE return std::sin(-13.F * kPi2 * (p + 1)) * std::pow(2.F, -10.F * p) + 1; } // Modeled after the piecewise exponentially-damped sine wave: // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5) // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] float ElasticInOut(float p) { if (p < 0.5F) { // NOLINT return 0.5 * std::sin(13.F * kPi2 * (2 * p)) * // NOLINT std::pow(2, 10 * ((2 * p) - 1)); // NOLINT } else { // NOLINT return 0.5 * (std::sin(-13.F * kPi2 * ((2 * p - 1) + 1)) * // NOLINT std::pow(2, -10 * (2 * p - 1)) + // NOLINT 2); // NOLINT } } // Modeled after the overshooting cubic y = x^3-x*sin(x*pi) float BackIn(float p) { return p * p * p - p * std::sin(p * kPi); } // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi)) float BackOut(float p) { float f = (1 - p); return 1 - (f * f * f - f * std::sin(f * kPi)); } // Modeled after the piecewise overshooting cubic function: // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5) // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1] float BackInOut(float p) { if (p < 0.5F) { // NOLINT float f = 2 * p; return 0.5F * (f * f * f - f * std::sin(f * kPi)); // NOLINT } else { float f = (1 - (2 * p - 1)); // NOLINT return 0.5F * (1 - (f * f * f - f * std::sin(f * kPi))) + 0.5; // NOLINT } } float BounceIn(float p) { return 1 - BounceOut(1 - p); } float BounceOut(float p) { if (p < 4 / 11.0) { // NOLINT return (121 * p * p) / 16.0; // NOLINT } else if (p < 8 / 11.0) { // NOLINT return (363 / 40.0 * p * p) - (99 / 10.0 * p) + 17 / 5.0; // NOLINT } else if (p < 9 / 10.0) { // NOLINT return (4356 / 361.0 * p * p) - (35442 / 1805.0 * p) + // NOLINT 16061 / 1805.0; // NOLINT } else { // NOLINT return (54 / 5.0 * p * p) - (513 / 25.0 * p) + 268 / 25.0; // NOLINT } } float BounceInOut(float p) { // NOLINT if (p < 0.5F) { // NOLINT return 0.5F * BounceIn(p * 2); // NOLINT } else { // NOLINT return 0.5F * BounceOut(p * 2 - 1) + 0.5F; // NOLINT } } } // namespace easing Animator::Animator(float* from, float to, Duration duration, easing::Function easing_function, Duration delay) : value_(from), from_(*from), to_(to), duration_(duration), easing_function_(std::move(easing_function)), current_(-delay) { RequestAnimationFrame(); } void Animator::OnAnimation(Params& params) { current_ += params.duration(); if (current_ >= duration_) { *value_ = to_; return; } if (current_ <= Duration()) { *value_ = from_; } else { *value_ = from_ + (to_ - from_) * easing_function_(current_ / duration_); // NOLINT } RequestAnimationFrame(); } } // namespace ftxui::animation