mirror of
https://github.com/ArthurSonzogni/FTXUI.git
synced 2025-05-06 17:21:13 +08:00
286 lines
7.3 KiB
C++
286 lines
7.3 KiB
C++
#include <cmath> // for sin, pow, sqrt, cos
|
|
#include <ratio> // for ratio
|
|
#include <utility> // for move
|
|
|
|
#include "ftxui/component/animation.hpp"
|
|
|
|
// NOLINTBEGIN(*-magic-numbers)
|
|
namespace ftxui::animation {
|
|
|
|
namespace easing {
|
|
|
|
namespace {
|
|
constexpr float kPi = 3.14159265358979323846f;
|
|
constexpr float kPi2 = kPi / 2.f;
|
|
} // namespace
|
|
|
|
// Easing function have been taken out of:
|
|
// https://github.com/warrenm/AHEasing/blob/master/AHEasing/easing.c
|
|
//
|
|
// Corresponding license:
|
|
// Copyright (c) 2011, Auerhaus Development, LLC
|
|
//
|
|
// This program is free software. It comes without any warranty, to
|
|
// the extent permitted by applicable law. You can redistribute it
|
|
// and/or modify it under the terms of the Do What The Fuck You Want
|
|
// To Public License, Version 2, as published by Sam Hocevar. See
|
|
// http://sam.zoy.org/wtfpl/COPYING for more details.
|
|
|
|
// Modeled after the line y = x
|
|
float Linear(float p) {
|
|
return p;
|
|
}
|
|
|
|
// Modeled after the parabola y = x^2
|
|
float QuadraticIn(float p) {
|
|
return p * p;
|
|
}
|
|
|
|
// Modeled after the parabola y = -x^2 + 2x
|
|
float QuadraticOut(float p) {
|
|
return -(p * (p - 2.f));
|
|
}
|
|
|
|
// Modeled after the piecewise quadratic
|
|
// y = (1/2)((2x)^2) ; [0, 0.5)
|
|
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
|
|
float QuadraticInOut(float p) {
|
|
return p < 0.5f ? 2.f * p * p : (-2.f * p * p) + (4.f * p) - 1.f;
|
|
}
|
|
|
|
// Modeled after the cubic y = x^3
|
|
float CubicIn(float p) {
|
|
return p * p * p;
|
|
}
|
|
|
|
// Modeled after the cubic y = (x - 1)^3 + 1
|
|
float CubicOut(float p) {
|
|
const float f = (p - 1.f);
|
|
return f * f * f + 1.f;
|
|
}
|
|
|
|
// Modeled after the piecewise cubic
|
|
// y = (1/2)((2x)^3) ; [0, 0.5)
|
|
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
|
|
float CubicInOut(float p) {
|
|
if (p < 0.5f) {
|
|
return 4.f * p * p * p;
|
|
}
|
|
const float f = ((2.f * p) - 2.f);
|
|
return 0.5f * f * f * f + 1.f;
|
|
}
|
|
|
|
// Modeled after the quartic x^4
|
|
float QuarticIn(float p) {
|
|
return p * p * p * p;
|
|
}
|
|
|
|
// Modeled after the quartic y = 1 - (x - 1)^4
|
|
float QuarticOut(float p) {
|
|
const float f = (p - 1.f);
|
|
return f * f * f * (1.f - p) + 1.f;
|
|
}
|
|
|
|
// Modeled after the piecewise quartic
|
|
// y = (1/2)((2x)^4) ; [0, 0.5)
|
|
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
|
|
float QuarticInOut(float p) {
|
|
if (p < 0.5f) {
|
|
return 8.f * p * p * p * p;
|
|
}
|
|
const float f = (p - 1.f);
|
|
return -8.f * f * f * f * f + 1.f;
|
|
}
|
|
|
|
// Modeled after the quintic y = x^5
|
|
float QuinticIn(float p) {
|
|
return p * p * p * p * p;
|
|
}
|
|
|
|
// Modeled after the quintic y = (x - 1)^5 + 1
|
|
float QuinticOut(float p) {
|
|
const float f = (p - 1.f);
|
|
return f * f * f * f * f + 1.f;
|
|
}
|
|
|
|
// Modeled after the piecewise quintic
|
|
// y = (1/2)((2x)^5) ; [0, 0.5)
|
|
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
|
|
float QuinticInOut(float p) {
|
|
if (p < 0.5f) {
|
|
return 16.f * p * p * p * p * p;
|
|
}
|
|
const float f = ((2.f * p) - 2.f);
|
|
return 0.5f * f * f * f * f * f + 1.f;
|
|
}
|
|
|
|
// Modeled after quarter-cycle of sine wave
|
|
float SineIn(float p) {
|
|
return std::sin((p - 1.f) * kPi2) + 1.f;
|
|
}
|
|
|
|
// Modeled after quarter-cycle of sine wave (different phase)
|
|
float SineOut(float p) {
|
|
return std::sin(p * kPi2);
|
|
}
|
|
|
|
// Modeled after half sine wave
|
|
float SineInOut(float p) {
|
|
return 0.5f * (1.f - std::cos(p * kPi));
|
|
}
|
|
|
|
// Modeled after shifted quadrant IV of unit circle
|
|
float CircularIn(float p) {
|
|
return 1.f - std::sqrt(1.f - (p * p));
|
|
}
|
|
|
|
// Modeled after shifted quadrant II of unit circle
|
|
float CircularOut(float p) {
|
|
return std::sqrt((2.f - p) * p);
|
|
}
|
|
|
|
// Modeled after the piecewise circular function
|
|
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
|
|
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
|
|
float CircularInOut(float p) {
|
|
if (p < 0.5f) {
|
|
return 0.5f * (1.f - std::sqrt(1.f - 4.f * (p * p)));
|
|
}
|
|
return 0.5f * (std::sqrt(-((2.f * p) - 3.f) * ((2.f * p) - 1.f)) + 1.f);
|
|
}
|
|
|
|
// Modeled after the exponential function y = 2^(10(x - 1))
|
|
float ExponentialIn(float p) {
|
|
return (p == 0.f) ? p : std::pow(2.f, 10.f * (p - 1.f));
|
|
}
|
|
|
|
// Modeled after the exponential function y = -2^(-10x) + 1
|
|
float ExponentialOut(float p) {
|
|
return (p == 1.f) ? p : 1.f - std::pow(2.f, -10.f * p);
|
|
}
|
|
|
|
// Modeled after the piecewise exponential
|
|
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
|
|
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
|
|
float ExponentialInOut(float p) {
|
|
if (p == 0.f || p == 1.f) {
|
|
return p;
|
|
}
|
|
|
|
if (p < 0.5f) {
|
|
return 0.5f * std::pow(2.f, (20.f * p) - 10.f);
|
|
}
|
|
return -0.5f * std::pow(2.f, (-20.f * p) + 10.f) + 1.f;
|
|
}
|
|
|
|
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
|
|
float ElasticIn(float p) {
|
|
return std::sin(13.f * kPi2 * p) * std::pow(2.f, 10.f * (p - 1.f));
|
|
}
|
|
|
|
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) +
|
|
// 1
|
|
float ElasticOut(float p) {
|
|
return std::sin(-13.f * kPi2 * (p + 1.f)) * std::pow(2.f, -10.f * p) + 1.f;
|
|
}
|
|
|
|
// Modeled after the piecewise exponentially-damped sine wave:
|
|
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
|
|
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
|
|
float ElasticInOut(float p) {
|
|
if (p < 0.5f) {
|
|
return 0.5f * std::sin(13.f * kPi2 * (2.f * p)) *
|
|
std::pow(2.f, 10.f * ((2.f * p) - 1.f));
|
|
}
|
|
return 0.5f * (std::sin(-13.f * kPi2 * ((2.f * p - 1.f) + 1.f)) *
|
|
std::pow(2.f, -10.f * (2.f * p - 1.f)) +
|
|
2.f);
|
|
}
|
|
|
|
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
|
|
float BackIn(float p) {
|
|
return p * p * p - p * std::sin(p * kPi);
|
|
}
|
|
|
|
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
|
|
float BackOut(float p) {
|
|
const float f = (1.f - p);
|
|
return 1.f - (f * f * f - f * std::sin(f * kPi));
|
|
}
|
|
|
|
// Modeled after the piecewise overshooting cubic function:
|
|
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
|
|
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
|
|
float BackInOut(float p) {
|
|
if (p < 0.5f) {
|
|
const float f = 2.f * p;
|
|
return 0.5f * (f * f * f - f * std::sin(f * kPi));
|
|
}
|
|
const float f = (1.f - (2.f * p - 1.f));
|
|
return 0.5f * (1.f - (f * f * f - f * std::sin(f * kPi))) + 0.5f;
|
|
}
|
|
|
|
float BounceIn(float p) {
|
|
return 1.f - BounceOut(1.f - p);
|
|
}
|
|
|
|
float BounceOut(float p) {
|
|
if (p < 4.f / 11.f) {
|
|
return (121.f * p * p) / 16.f;
|
|
}
|
|
|
|
if (p < 8.f / 11.f) {
|
|
return (363.f / 40.f * p * p) - (99.f / 10.f * p) + 17.f / 5.f;
|
|
}
|
|
|
|
if (p < 9.f / 10.f) {
|
|
return (4356.f / 361.f * p * p) - (35442.f / 1805.f * p) + 16061.f / 1805.f;
|
|
}
|
|
|
|
return (54.f / 5.f * p * p) - (513 / 25.f * p) + 268 / 25.f;
|
|
}
|
|
|
|
float BounceInOut(float p) {
|
|
if (p < 0.5f) {
|
|
return 0.5f * BounceIn(p * 2.f);
|
|
}
|
|
return 0.5f * BounceOut(p * 2.f - 1.f) + 0.5f;
|
|
}
|
|
|
|
} // namespace easing
|
|
|
|
Animator::Animator(float* from,
|
|
float to,
|
|
Duration duration,
|
|
easing::Function easing_function,
|
|
Duration delay)
|
|
: value_(from),
|
|
from_(*from),
|
|
to_(to),
|
|
duration_(duration),
|
|
easing_function_(std::move(easing_function)),
|
|
current_(-delay) {
|
|
RequestAnimationFrame();
|
|
}
|
|
|
|
void Animator::OnAnimation(Params& params) {
|
|
current_ += params.duration();
|
|
|
|
if (current_ >= duration_) {
|
|
*value_ = to_;
|
|
return;
|
|
}
|
|
|
|
if (current_ <= Duration()) {
|
|
*value_ = from_;
|
|
} else {
|
|
*value_ = from_ + (to_ - from_) * easing_function_(current_ / duration_);
|
|
}
|
|
|
|
RequestAnimationFrame();
|
|
}
|
|
|
|
} // namespace ftxui::animation
|
|
|
|
// NOLINTEND(*-magic-numbers)
|