*dk volume_tri subroutine volume_tri(x1,y1,z1, * x2,y2,z2, * x3,y3,z3, * voltri) C C C####################################################################### C C PURPOSE - C C THIS ROUTINE FINDS THE VOLUME OF A TRI-ELEMENT DEFINDED BY C 3 COORDINATE NODES. THE VOLUME IS FOUND BY TAKING THE C CROSS PRODUCT OF TWO VECTORS. C C C ****************************************************************** C C DEFINE THE STRUCTURE OF A GENERIC TRIANGLE. C C i3 *- - - - - -* i2 C \ / C \ / C \ / C \ / C \ / C * C i1 C C ****************************************************************** C C INPUT ARGUMENTS - C C (x1,y1,z1),...,(x3,y3,z3) - THE COORDINATES OF THE TRI. C C OUTPUT ARGUMENTS - C C voltri - THE AREA OF THE TRI. C C CHANGE HISTORY - C C $Log: volume_tri.f,v $ C Revision 2.00 2007/11/09 20:04:06 spchu C Import to CVS C CPVCS CPVCS Rev 1.2 Tue Oct 19 13:16:10 1999 jtg CPVCS changed comment lines to actually correspond to a tri CPVCS CPVCS Rev 1.1 Mon Apr 14 17:05:44 1997 pvcs CPVCS No change. CPVCS CPVCS Rev 1.0 Mon Jul 29 15:42:52 1996 dcg CPVCS Initial revision. C C####################################################################### C C implicit real*8 (a-h,o-z) C C####################################################################### C C C .................................................................. C TAKE THE CROSS PRODUCT OF THE 21 AND 31 VECTORS TO THE AN AREA C VECTOR. C dx= (y2-y1)*(z3-z1) - (y3-y1)*(z2-z1) dy= (z2-z1)*(x3-x1) - (z3-z1)*(x2-x1) dz= (x2-x1)*(y3-y1) - (x3-x1)*(y2-y1) C C .................................................................. C THEN TAKE 1/2 THE MAGNITUDE OF THIS AREA VECTOR TO GET THE TRI VOLUME C voltri=0.5d+00*sqrt(dx**2+dy**2+dz**2) C return end