Files

299 lines
9.8 KiB
Python
Raw Permalink Normal View History

2025-12-17 10:53:43 +08:00
# %% [markdown]
# # notebook for create init and true test model
# %%
import numpy as np
import math
if __name__ == "__main__":
# get arguments
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--n_rtp", type=int, nargs=3, default=[55,55,55])
# n_sweep
parser.add_argument("--n_sweep", type=int, default=1)
# ndiv_rtp
parser.add_argument("--ndiv_rtp", type=int, nargs=3, default=[1,1,1])
# use_gpu
parser.add_argument("--use_gpu", type=int, default=0)
n_rtp = parser.parse_args().n_rtp
n_sweep = parser.parse_args().n_sweep
ndiv_rtp = parser.parse_args().ndiv_rtp
use_gpu = parser.parse_args().use_gpu
#
# create model file if not exists
#
# filename
str_nrtp = str(n_rtp[0])+"-"+str(n_rtp[1])+"-"+str(n_rtp[2])
fname_init = 'test_model_init_{}.h5'.format(str_nrtp)
fname_true = 'test_model_true_{}.h5'.format(str_nrtp)
# grid params
R_earth = 6371.0 #6378.1370
rr1=6070
rr2=6400
tt1=(30.0-1.5)/180*math.pi
tt2=(50.0+1.5)/180*math.pi
pp1=(15.0-1.5)/180*math.pi
pp2=(40.0+1.5)/180*math.pi
import os
if not os.path.exists(fname_true):
#n_rtp = [55,55,55]
dr = (rr2-rr1)/(n_rtp[0]-1)
dt = (tt2-tt1)/(n_rtp[1]-1)
dp = (pp2-pp1)/(n_rtp[2]-1)
rr = np.array([rr1 + x*dr for x in range(n_rtp[0])])
tt = np.array([tt1 + x*dt for x in range(n_rtp[1])])
pp = np.array([pp1 + x*dp for x in range(n_rtp[2])])
# initial model
gamma = 0.0
#s0 = 1.0/6.0
slow_p=0.04
ani_p=0.03
eta_init = np.zeros(n_rtp)
xi_init = np.zeros(n_rtp)
zeta_init = np.zeros(n_rtp)
fun_init = np.zeros(n_rtp)
vel_init = np.zeros(n_rtp)
# true model
eta_true = np.zeros(n_rtp)
xi_true = np.zeros(n_rtp)
zeta_true = np.zeros(n_rtp)
fun_true = np.zeros(n_rtp)
vel_true = np.zeros(n_rtp)
c=0
for ir in range(n_rtp[2]):
for it in range(n_rtp[1]):
for ip in range(n_rtp[0]):
#eta_init[ir,it,ip] = 0.0
#xi_init[ir,it,ip] = 0.0
zeta_init[ir,it,ip] = gamma*math.sqrt(eta_init[ir,it,ip]**2 + xi_init[ir,it,ip]**2)
if (rr[ir]>6351):
fun_init[ir,it,ip] = 1.0/(5.8+(6371-rr[ir])/20.0*0.7)
elif (rr[ir]>6336):
fun_init[ir,it,ip] = 1.0/(6.5+(6351-rr[ir])/15.0*0.6)
elif (rr[ir]>5961):
fun_init[ir,it,ip] = 1.0/(8.0+(6336-rr[ir])/375.0*1)
else:
fun_init[ir,it,ip] = 1.0/9.0
vel_init[ir,it,ip] = 1.0/fun_init[ir,it,ip]
# true model
if (tt[it] >= 30.0/180.0*math.pi and tt[it] <= 50.0/180.0*math.pi \
and pp[ip] >= 15.0/180.0*math.pi and pp[ip] <= 40.0/180.0*math.pi \
and rr[ir] >= 6211.0 and rr[ir] <= 6371.0):
c+=1
sigma = math.sin(4.0*math.pi*(tt[it]-30.0/180.0*math.pi)/(20.0/180.0*math.pi)) \
*math.sin(4.0*math.pi*(pp[ip]-15.0/180.0*math.pi)/(25.0/180.0*math.pi)) \
*math.sin(2.0*math.pi*(rr[ir]-6211.0)/160.0)
else:
sigma = 0.0
if sigma < 0:
psi = 60.0/180.0*math.pi
elif sigma > 0:
psi = 150.0/180.0*math.pi
else:
psi = 0.0
eta_true[ir,it,ip] = ani_p*abs(sigma)*math.sin(2.0*psi)
xi_true[ir,it,ip] = ani_p*abs(sigma)*math.cos(2.0*psi)
zeta_true[ir,it,ip] = gamma*math.sqrt(eta_true[ir,it,ip]**2 + xi_true[ir,it,ip]**2)
fun_true[ir,it,ip] = fun_init[ir,it,ip]/(1.0+sigma*slow_p)
vel_true[ir,it,ip] = 1.0/fun_true[ir,it,ip]
r_earth = R_earth #6378.1370
print("depminmax {} {}".format(r_earth-rr1,r_earth-rr2))
print(c)
# %%
# write out
import h5py
# n_rtp to storing
fout_init = h5py.File(fname_init, 'w')
fout_true = h5py.File(fname_true, 'w')
# write out the arrays eta_init, xi_init, zeta_init, fun_init, a_init, b_init, c_init, f_init
fout_init.create_dataset('eta', data=eta_init)
fout_init.create_dataset('xi', data=xi_init)
fout_init.create_dataset('zeta',data=zeta_init)
fout_init.create_dataset('vel', data=vel_init)
# writeout the arrays eta_true, xi_true, zeta_true, fun_true, a_true, b_true, c_true, f_true
fout_true.create_dataset('eta', data=eta_true)
fout_true.create_dataset('xi', data=xi_true)
fout_true.create_dataset('zeta',data=zeta_true)
fout_true.create_dataset('vel', data=vel_true)
fout_init.close()
fout_true.close()
#
# create src rec file
# %% [markdown]
# # prepare src station file
#
# ```
# 26 1992 1 1 2 43 56.900 1.8000 98.9000 137.00 2.80 8 305644 <- src  : id_src year month day hour min sec lat lon dep_km mag num_recs id_event
# 26 1 PCBI 1.8900 98.9253 1000.0000 P 10.40 18.000 <- arrival : id_src id_rec name_rec lat lon elevation_m phase epicentral_distance_km arrival_time_sec
# 26 2 MRPI 1.6125 99.3172 1100.0000 P 50.84 19.400
# 26 3 HUTI 2.3153 98.9711 1600.0000 P 57.84 19.200
#
# ```
# %%
#import random
#random.seed(123456789)
# dummys
year_dummy = 1998
month_dummy = 1
day_dummy = 1
hour_dummy = 0
minute_dummy = 0
second_dummy = 0
mag_dummy = 3.0
id_dummy = 1000
st_name_dummy = 'AAAA'
phase_dummy = 'P'
arriv_t_dummy = 0.0
tt1deg = tt1 * 180.0/math.pi
tt2deg = tt2 * 180.0/math.pi
pp1deg = pp1 * 180.0/math.pi
pp2deg = pp2 * 180.0/math.pi
n_src = 1
n_rec = [1 for x in range(n_src)]
lines = []
pos_src=[]
pos_rec=[]
dep_srcs=[12.902894]
lon_srcs=[16.794572]
lat_srcs=[37.503373]
elev_recs = [0.0]
lon_recs = [29.812050]
lat_recs = [36.472809]
# create dummy src
for i_src in range(n_src):
# define one point in the domain (rr1 bottom, rr2 top)
dep = dep_srcs[i_src]
lon = lon_srcs[i_src]
lat = lat_srcs[i_src]
src = [i_src, year_dummy, month_dummy, day_dummy, hour_dummy, minute_dummy, second_dummy, lat, lon, dep, mag_dummy, n_rec[i_src], id_dummy]
lines.append(src)
pos_src.append([lon,lat,dep])
# create dummy station
for i_rec in range(n_rec[i_src]):
#elev_rec = random.uniform(0.0,-10.0) # elevation in m
#lon_rec = random.uniform(pp1deg,pp2deg)
#lat_rec = random.uniform(tt1deg,tt2deg)
rec = [i_src, i_rec, st_name_dummy+"_"+str(i_rec), lat_recs[i_rec], lon_recs[i_rec], elev_recs[i_rec], phase_dummy, arriv_t_dummy]
lines.append(rec)
pos_rec.append([lon_recs[i_rec],lat_recs[i_rec],elev_recs[i_rec]])
# write out ev_arrivals file
fname = 'src_rec_test.dat'
with open(fname, 'w') as f:
for line in lines:
for elem in line:
f.write('{} '.format(elem))
f.write('\n')
# %%
# draw src and rec positions
#import matplotlib.pyplot as plt
#
#for i_src in range(n_src):
# plt.scatter(pos_src[i_src][1],pos_src[i_src][0],c='r',marker='o')
#
## %%
## plot receivers
#for i_rec in range(n_rec[0]):
# plt.scatter(pos_rec[i_rec][1],pos_rec[i_rec][0],c='b',marker='o')
str_input_file = """version : 2
domain :
#min_max_dep : [-21.863,308.8137] # depth in km
min_max_dep : [-29.0, 301.0] # depth in km with R = 6371.0
min_max_lat : [28.5,51.5] # latitude in degree
min_max_lon : [13.5,41.5] # longitude in degree
n_rtp : [{},{},{}] # number of nodes
source :
#src_dep_lat_lon : [5.0,40.0,24.0] # source depth in km, latitude, longitude in degree
#src_dep_lat_lon : [5750.6370,46.0,36.0] # source depth in km, latitude, longitude in degree
src_rec_file : 'src_rec_test.dat' # source receiver file (if found, src_dep_lat_lon is ignored)
swap_src_rec : 1 # swap source and receiver
model :
init_model_type : '' # 'fd' (input file) or '1d_ak135'
init_model_path : './test_model_true_{}-{}-{}.h5' # path to initial model file (ignored if init_model_type is '1d_*')
inversion :
run_mode : 0 # 0 for forward simulation only, 1 for inversion
n_inversion_grid : 1
parallel :
n_sims : 1 # number of simultaneous run
ndiv_rtp : [{},{},{}] # number of subdomains
nproc_sub : {} # number of subprocess used for each subdomain
use_gpu : {}
calculation :
convergence_tolerance : 1e-4
max_iterations : 200
stencil_order : 3 # 1 or 3
sweep_type : 1 # 0: legacy, 1: cuthill-mckee with shm parallelization
output_setting :
is_output_source_field : 0 # output the calculated field of all sources 1 for yes; 0 for no; default: 1
is_verbose_output : 0 # output internal parameters, if no, only model parameters are out. 1 for yes; 0 for no; default: 0
is_output_model_dat : 0 # output model_parameters_inv_0000.dat or not. 1 for yes; 0 for no; default: 1
""".format(n_rtp[0],n_rtp[1],n_rtp[2],n_rtp[0],n_rtp[1],n_rtp[2], ndiv_rtp[0],ndiv_rtp[1],ndiv_rtp[2], n_sweep, use_gpu)
str_nsweep_ndiv_rtp = str(n_sweep) + '-' + str(ndiv_rtp[0]) + '-' + str(ndiv_rtp[1]) + '-' + str(ndiv_rtp[2])
# write out
with open('input_params_{}_{}.yml'.format(str_nrtp, str_nsweep_ndiv_rtp), 'w') as f:
f.write(str_input_file)