241 lines
6.7 KiB
Python
241 lines
6.7 KiB
Python
|
|
# %% [markdown]
|
|||
|
|
# # notebook for create init and true test model
|
|||
|
|
|
|||
|
|
# %%
|
|||
|
|
import numpy as np
|
|||
|
|
import math
|
|||
|
|
|
|||
|
|
# grid
|
|||
|
|
R_earth = 6371.0
|
|||
|
|
|
|||
|
|
rr1=6361
|
|||
|
|
rr2=6381
|
|||
|
|
tt1=(38.0-0.3)/180*math.pi
|
|||
|
|
tt2=(42.0+0.3)/180*math.pi
|
|||
|
|
pp1=(23.0-0.3)/180*math.pi
|
|||
|
|
pp2=(27.0+0.3)/180*math.pi
|
|||
|
|
|
|||
|
|
n_rtp = [10,50,50]
|
|||
|
|
dr = (rr2-rr1)/(n_rtp[0]-1)
|
|||
|
|
dt = (tt2-tt1)/(n_rtp[1]-1)
|
|||
|
|
dp = (pp2-pp1)/(n_rtp[2]-1)
|
|||
|
|
rr = np.array([rr1 + x*dr for x in range(n_rtp[0])])
|
|||
|
|
tt = np.array([tt1 + x*dt for x in range(n_rtp[1])])
|
|||
|
|
pp = np.array([pp1 + x*dp for x in range(n_rtp[2])])
|
|||
|
|
|
|||
|
|
# initial model
|
|||
|
|
gamma = 0.0
|
|||
|
|
s0 = 1.0/6.0
|
|||
|
|
slow_p=0.06
|
|||
|
|
ani_p=0.04
|
|||
|
|
|
|||
|
|
eta_init = np.zeros(n_rtp)
|
|||
|
|
xi_init = np.zeros(n_rtp)
|
|||
|
|
zeta_init = np.zeros(n_rtp)
|
|||
|
|
fun_init = np.zeros(n_rtp)
|
|||
|
|
vel_init = np.zeros(n_rtp)
|
|||
|
|
|
|||
|
|
# true model
|
|||
|
|
eta_true = np.zeros(n_rtp)
|
|||
|
|
xi_true = np.zeros(n_rtp)
|
|||
|
|
zeta_true = np.zeros(n_rtp)
|
|||
|
|
fun_true = np.zeros(n_rtp)
|
|||
|
|
vel_true = np.zeros(n_rtp)
|
|||
|
|
|
|||
|
|
c=0
|
|||
|
|
for ir in range(n_rtp[0]):
|
|||
|
|
for it in range(n_rtp[1]):
|
|||
|
|
for ip in range(n_rtp[2]):
|
|||
|
|
# already initialized above
|
|||
|
|
#eta_init[ir,it,ip] = 0.0
|
|||
|
|
#xi_init[ir,it,ip] = 0.0
|
|||
|
|
zeta_init[ir,it,ip] = gamma*math.sqrt(eta_init[ir,it,ip]**2 + xi_init[ir,it,ip]**2)
|
|||
|
|
fun_init[ir,it,ip] = s0
|
|||
|
|
vel_init[ir,it,ip] = 1.0/s0
|
|||
|
|
|
|||
|
|
# true model
|
|||
|
|
if (tt[it] >= 38.0/180.0*math.pi and tt[it] <= 42.0/180.0*math.pi \
|
|||
|
|
and pp[ip] >= 23.0/180.0*math.pi and pp[ip] <= 27.0/180.0*math.pi):
|
|||
|
|
c+=1
|
|||
|
|
sigma = math.sin(2.0*math.pi*(tt[it]-38.0/180.0*math.pi)/(4.0/180.0*math.pi))*math.sin(2.0*math.pi*(pp[ip]-23.0/180.0*math.pi)/(4.0/180.0*math.pi))
|
|||
|
|
else:
|
|||
|
|
sigma = 0.0
|
|||
|
|
|
|||
|
|
if sigma < 0:
|
|||
|
|
psi = 60.0/180.0*math.pi
|
|||
|
|
elif sigma > 0:
|
|||
|
|
psi = 120.0/180.0*math.pi
|
|||
|
|
else:
|
|||
|
|
psi = 0.0
|
|||
|
|
|
|||
|
|
eta_true[ir,it,ip] = ani_p*abs(sigma)*math.sin(2.0*psi)
|
|||
|
|
xi_true[ir,it,ip] = ani_p*abs(sigma)*math.cos(2.0*psi)
|
|||
|
|
zeta_true[ir,it,ip] = gamma*math.sqrt(eta_true[ir,it,ip]**2 + xi_true[ir,it,ip]**2)
|
|||
|
|
fun_true[ir,it,ip] = s0/(1.0+sigma*slow_p)
|
|||
|
|
vel_true[ir,it,ip] = 1.0/fun_true[ir,it,ip]
|
|||
|
|
|
|||
|
|
|
|||
|
|
#r_earth = 6378.1370
|
|||
|
|
print("depminmax {} {}".format(R_earth-rr1,R_earth-rr2))
|
|||
|
|
print(c)
|
|||
|
|
|
|||
|
|
|
|||
|
|
# %%
|
|||
|
|
# write out in hdf5 format
|
|||
|
|
import h5py
|
|||
|
|
|
|||
|
|
fout_init = h5py.File('test_model_init.h5', 'w')
|
|||
|
|
fout_true = h5py.File('test_model_true.h5', 'w')
|
|||
|
|
|
|||
|
|
# write out the arrays eta_init, xi_init, zeta_init, fun_init, a_init, b_init, c_init, f_init
|
|||
|
|
fout_init.create_dataset('eta', data=eta_init)
|
|||
|
|
fout_init.create_dataset('xi', data=xi_init)
|
|||
|
|
fout_init.create_dataset('zeta', data=zeta_init)
|
|||
|
|
fout_init.create_dataset('vel', data=vel_init)
|
|||
|
|
|
|||
|
|
# writeout the arrays eta_true, xi_true, zeta_true, fun_true, a_true, b_true, c_true, f_true
|
|||
|
|
fout_true.create_dataset('eta', data=eta_true)
|
|||
|
|
fout_true.create_dataset('xi', data=xi_true)
|
|||
|
|
fout_true.create_dataset('zeta', data=zeta_true)
|
|||
|
|
fout_true.create_dataset('vel', data=vel_true)
|
|||
|
|
|
|||
|
|
fout_init.close()
|
|||
|
|
fout_true.close()
|
|||
|
|
|
|||
|
|
|
|||
|
|
# %% [markdown]
|
|||
|
|
# # prepare src station file
|
|||
|
|
#
|
|||
|
|
# The following code creates a src_rec_file for the inversion, which describes the source and receiver positions and arrival times.
|
|||
|
|
# Format is as follows:
|
|||
|
|
#
|
|||
|
|
# ```
|
|||
|
|
# 26 1992 1 1 2 43 56.900 1.8000 98.9000 137.00 2.80 8 305644 <- src : id_src year month day hour min sec lat lon dep_km mag num_recs id_event
|
|||
|
|
# 26 1 PCBI 1.8900 98.9253 1000.0000 P 10.40 18.000 <- arrival : id_src id_rec name_rec lat lon elevation_m phase epicentral_distance_km arrival_time_sec
|
|||
|
|
# 26 2 MRPI 1.6125 99.3172 1100.0000 P 50.84 19.400
|
|||
|
|
# 26 3 HUTI 2.3153 98.9711 1600.0000 P 57.84 19.200
|
|||
|
|
# ....
|
|||
|
|
#
|
|||
|
|
# ```
|
|||
|
|
|
|||
|
|
# %%
|
|||
|
|
import random
|
|||
|
|
random.seed(1145141919810)
|
|||
|
|
|
|||
|
|
# dummys
|
|||
|
|
year_dummy = 1998
|
|||
|
|
month_dummy = 1
|
|||
|
|
day_dummy = 1
|
|||
|
|
hour_dummy = 0
|
|||
|
|
minute_dummy = 0
|
|||
|
|
second_dummy = 0
|
|||
|
|
mag_dummy = 3.0
|
|||
|
|
id_dummy = 1000
|
|||
|
|
st_name_dummy = 'AAAA'
|
|||
|
|
phase_dummy = 'P'
|
|||
|
|
arriv_t_dummy = 0.0
|
|||
|
|
weight_dummy = 0.444
|
|||
|
|
|
|||
|
|
tt1deg = tt1 * 180.0/math.pi
|
|||
|
|
tt2deg = tt2 * 180.0/math.pi
|
|||
|
|
pp1deg = pp1 * 180.0/math.pi
|
|||
|
|
pp2deg = pp2 * 180.0/math.pi
|
|||
|
|
|
|||
|
|
|
|||
|
|
n_srcs = [10,20,20]
|
|||
|
|
#n_srcs = [2,1,1]
|
|||
|
|
n_src = n_srcs[0]*n_srcs[1]*n_srcs[2]
|
|||
|
|
n_rec = [30 for x in range(n_src)]
|
|||
|
|
|
|||
|
|
lines = []
|
|||
|
|
|
|||
|
|
nij_rec = math.sqrt(n_rec[0])
|
|||
|
|
|
|||
|
|
pos_src=[]
|
|||
|
|
pos_rec=[]
|
|||
|
|
|
|||
|
|
|
|||
|
|
# create receiver coordinates
|
|||
|
|
elev_recs=[]
|
|||
|
|
lon_recs=[]
|
|||
|
|
lat_recs=[]
|
|||
|
|
rec_names=[]
|
|||
|
|
for i in range(n_rec[0]):
|
|||
|
|
#elev_recs.append(random.uniform(-100.0,-100.0)) # elevation in m
|
|||
|
|
#elev_recs.append(0) # elevation in m
|
|||
|
|
#lon_recs .append(random.uniform(pp1deg*1.1,pp2deg*0.9))
|
|||
|
|
#lat_recs .append(random.uniform(tt1deg*1.1,tt2deg*0.9))
|
|||
|
|
rec_names.append(i)
|
|||
|
|
# regularly
|
|||
|
|
elev_recs.append(0.0)
|
|||
|
|
tmp_ilon = i%nij_rec
|
|||
|
|
tmp_ilat = int(i/nij_rec)
|
|||
|
|
lon_recs.append(pp1deg + tmp_ilon*(pp2deg-pp1deg)/nij_rec)
|
|||
|
|
lat_recs.append(tt1deg + tmp_ilat*(tt2deg-tt1deg)/nij_rec)
|
|||
|
|
|
|||
|
|
|
|||
|
|
|
|||
|
|
# create source coordinates
|
|||
|
|
for ir in range(n_srcs[0]):
|
|||
|
|
for it in range(n_srcs[1]):
|
|||
|
|
for ip in range(n_srcs[2]):
|
|||
|
|
i_src = ir*n_srcs[1]*n_srcs[2] + it*n_srcs[2] + ip
|
|||
|
|
# define one point in the domain (rr1 bottom, rr2 top)
|
|||
|
|
# random
|
|||
|
|
#dep = random.uniform((R_earth-rr1)*0.5,(R_earth-rr1)*0.98)
|
|||
|
|
#lon = random.uniform(pp1deg,pp2deg)
|
|||
|
|
#lat = random.uniform(tt1deg,tt2deg)
|
|||
|
|
|
|||
|
|
# regular
|
|||
|
|
dep = (R_earth-rr1)/n_srcs[0]*ir
|
|||
|
|
lon = pp1deg + ip*(pp2deg-pp1deg)/n_srcs[2]
|
|||
|
|
lat = tt1deg + it*(tt2deg-tt1deg)/n_srcs[1]
|
|||
|
|
|
|||
|
|
# put independent name for each source
|
|||
|
|
id_dummy = "src_"+str(i_src)
|
|||
|
|
|
|||
|
|
src = [i_src, year_dummy, month_dummy, day_dummy, hour_dummy, minute_dummy, second_dummy, lat, lon, dep, mag_dummy, n_rec[i_src], id_dummy, weight_dummy]
|
|||
|
|
lines.append(src)
|
|||
|
|
|
|||
|
|
pos_src.append([lon,lat,dep])
|
|||
|
|
|
|||
|
|
|
|||
|
|
# create dummy station
|
|||
|
|
for i_rec in range(n_rec[i_src]):
|
|||
|
|
elev_rec = elev_recs[i_rec]
|
|||
|
|
lon_rec = lon_recs[i_rec]
|
|||
|
|
lat_rec = lat_recs[i_rec]
|
|||
|
|
st_name_dummy = "rec_"+str(rec_names[i_rec])
|
|||
|
|
|
|||
|
|
rec = [i_src, i_rec, st_name_dummy, lat_rec, lon_rec, elev_rec, phase_dummy, arriv_t_dummy, weight_dummy]
|
|||
|
|
lines.append(rec)
|
|||
|
|
|
|||
|
|
pos_rec.append([lon_rec,lat_rec,elev_rec])
|
|||
|
|
|
|||
|
|
|
|||
|
|
# write out ev_arrivals file
|
|||
|
|
fname = 'src_rec_test.dat'
|
|||
|
|
|
|||
|
|
with open(fname, 'w') as f:
|
|||
|
|
for line in lines:
|
|||
|
|
for elem in line:
|
|||
|
|
f.write('{} '.format(elem))
|
|||
|
|
f.write('\n')
|
|||
|
|
|
|||
|
|
|
|||
|
|
# # %%
|
|||
|
|
# # draw src and rec positions
|
|||
|
|
# import matplotlib.pyplot as plt
|
|||
|
|
|
|||
|
|
# for i_src in range(n_src):
|
|||
|
|
# plt.scatter(pos_src[i_src][1],pos_src[i_src][0],c='r',marker='o')
|
|||
|
|
|
|||
|
|
# # %%
|
|||
|
|
# # plot receivers
|
|||
|
|
# for i_rec in range(n_rec[0]):
|
|||
|
|
# plt.scatter(pos_rec[i_rec][1],pos_rec[i_rec][0],c='b',marker='o')
|
|||
|
|
|
|||
|
|
|
|||
|
|
|
|||
|
|
|