# %% import pygmt pygmt.config(FONT="16p", IO_SEGMENT_MARKER="<<<") import os # %% from pytomoatt.model import ATTModel from pytomoatt.data import ATTData import numpy as np # %% # read model files Ngrid = [51,89,33] data_file = '2_models/model_init_N%d_%d_%d.h5'%(Ngrid[0],Ngrid[1],Ngrid[2]) par_file = '3_input_params/input_params_real.yaml' model = ATTModel.read(data_file, par_file) initial_model = model.to_xarray() data_file = 'OUTPUT_FILES/OUTPUT_FILES_real/final_model.h5' model = ATTModel.read(data_file, par_file) inv_model = model.to_xarray() # %% # read earthquakes and stations from pytomoatt.src_rec import SrcRec # read src_rec_file sr = SrcRec.read("1_src_rec_files/src_rec_file.dat") # rotate back to original coordinates central_lat = 35.6 central_lon = -120.45 rotation_angle = -30 sr.rotate(central_lat, central_lon, rotation_angle, reverse=True) # get the coordinates of the stations and earthquakes stations = sr.receivers[['stlo','stla','stel']].values.T earthquakes = sr.sources[['evlo','evla','evdp']].values.T print(stations.shape) print(earthquakes.shape) # %% # study region import sys sys.path.append('../utils') import functions_for_data as ffd lat1 = -1.8; lat2 = 2.2; lon1 = -0.7; lon2 = 0.7; lat_lon_rotate = np.array([[lon1,lat1],[lon1,lat2],[lon2,lat2],[lon2,lat1],[lon1,lat1]]) lat_lon = ffd.rtp_rotation_reverse(lat_lon_rotate[:,1],lat_lon_rotate[:,0],central_lat,central_lon,rotation_angle) studt_lat = lat_lon[0] studt_lon = lat_lon[1] # %% # load topography region = [-122.8,-118.5,33.5,38] grid_topo = pygmt.datasets.load_earth_relief(resolution="01m", region=region) grid_gra = pygmt.grdgradient(grid = grid_topo, azimuth = 0) # %% def line_read(file): doc=open(file,'r') file = doc.readlines() doc.close() lat = []; lon = []; for info in file: tmp = info.split() lon.append(float(tmp[0])) lat.append(float(tmp[1])) return((lat,lon)) # %% # plot imgaing results fig = pygmt.Figure() try: os.mkdir("img") except: pass # ------------------ Sub fig 1. topography ------------------ region = [-122.8,-118.5,33.5,38] frame = ["xa1","ya1","nSWe"] projection = "M10c" # topography pygmt.makecpt(cmap="globe", series=[-4000,4000], background = True) fig.grdimage(grid=grid_topo, shading = grid_gra, projection=projection, frame=frame,region=region) # study region fig.plot(x = studt_lon, y = studt_lat, pen = "1.5p,red") # earthquakes fig.plot(x = earthquakes[0,:], y = earthquakes[1,:], style = "c0.02c", fill = "red",label = "Earthquake") # stations fig.plot(x = stations[0,:], y = stations[1,:], style = "t0.2c", fill = "blue", pen = "white", label = "Station") fig.basemap(region=[0,1,0,1], frame=["wesn+gwhite"], projection="X4c/2c") fig.plot(x=0.1, y=0.3, style='c0.2c', fill='red') fig.text(text="Earthquake", x=0.2, y=0.3, font="16p,Helvetica", justify="LM") fig.plot(x=0.1, y=0.7, style='t0.4c', fill='blue', pen='black') fig.text(text="Station", x=0.2, y=0.7, font="16p,Helvetica", justify="LM") # ------------------ Sub fig 2. colorbar ------------------ fig.shift_origin(xshift= 2, yshift= -2) pygmt.makecpt(cmap="globe", series=[-4000,4000], background = True) fig.colorbar(frame = ["a%f"%(4000),"y+lElevation (m)"], position="+e+w4c/0.3c+h") fig.shift_origin(yshift=-2) pygmt.makecpt(cmap="../utils/svel13_chen.cpt", series=[-8, 8], background=True, reverse=False) fig.colorbar(frame = ["a%f"%(4),"y+ldlnVp (%)"], position="+e+w4c/0.3c+h") fig.shift_origin(yshift=-2) pygmt.makecpt(cmap="cool", series=[0, 0.08], background=True, reverse=False) fig.colorbar(frame = ["a%f"%(0.04),"y+lAnisotropy"], position="+ef+w4c/0.3c+h") # ------------------ Sub fig 3. model ------------------ fig.shift_origin(xshift = 10, yshift=8) region_oblique = [-0.7,0.7,-2.2,1.8] projection = "OA%s/%s/%s/4c"%(central_lon,central_lat,rotation_angle-90.0) perspective = "30/90" spacing = "1m" depth_list = [4,8,16] for idepth, depth in enumerate(depth_list): # initial model vel_init = initial_model.interp_dep(depth, field='vel') # output model vel_inv = inv_model.interp_dep(depth, field='vel') # velocity epsilon_inv = inv_model.interp_dep(depth, field='epsilon') # magnitude of anisotropy # fast velocity directions samp_interval = 3 ani_thd = 0.015 length = 20 width = 0.1 ani_inv_phi = inv_model.interp_dep(depth, field='phi', samp_interval=samp_interval) ani_inv_epsilon = inv_model.interp_dep(depth, field='epsilon', samp_interval=samp_interval) ani_inv = np.hstack([ani_inv_phi, ani_inv_epsilon[:,2].reshape(-1, 1)*length, np.ones((ani_inv_epsilon.shape[0],1))*width]) # lon, lat, angle, length, width idx = np.where(ani_inv_epsilon[:,2] > ani_thd) ani = ani_inv[idx[0],:] # --------- plot velocity ------------ if idepth == 0: frame = ["xa100","ya1","nSwE"] elif idepth == len(depth_list)-1: frame = ["xa100","ya1","NsWe"] else: frame = ["xa100","ya1","nswe"] fig.basemap(region=region_oblique, frame=frame, projection=projection, perspective=perspective) pygmt.makecpt(cmap="../utils/svel13_chen.cpt", series=[-8, 8], background=True, reverse=False) x = vel_init[:,0]; y = vel_init[:,1]; value = (vel_inv[:,2] - vel_init[:,2])/vel_init[:,2] * 100 y,x = ffd.rtp_rotation_reverse(y,x,central_lat,central_lon,rotation_angle) grid = pygmt.surface(x=x, y=y, z=value, spacing=spacing,region=region) fig.grdimage(frame=frame,grid = grid,projection=projection, region=region_oblique,perspective=perspective) # nan_transparent may work # tectonic setting fig.coast(region=region_oblique, frame=frame, projection=projection, perspective=perspective, shorelines="1p,black") # coastlines (SAFy,SAFx) = line_read("tectonics/SAF") fig.plot(x = SAFx, y = SAFy, pen = '3.0p,black', perspective = perspective) # SAF if idepth == 0: fig.text(text = "SMB", x = -120.45 , y = 35.0, font = "16p,Helvetica-Bold,black", angle = 150, fill = "lightblue", perspective = perspective) # SMB fig.text(text = "FT", x = -120.6 , y = 36.50, font = "16p,Helvetica-Bold,black", angle = 150, fill = "lightblue", perspective = perspective) # Franciscan terrane fig.text(text = "ST", x = -121.1 , y = 36.0, font = "16p,Helvetica-Bold,black", angle = 150, fill = "lightblue", perspective = perspective) # Salinian terrane fig.text(text = "TR", x = -119.30 , y = 34.70, font = "16p,Helvetica-Bold,black", angle = 150, fill = "lightblue", perspective = perspective) # Coast Ranges # depth label fig.text(text="%d km"%(depth), x = -119.8 , y = 34.0, font = "16p,Helvetica-Bold,black", angle = 180, fill = "white", perspective = perspective) # Coast Ranges # --------- plot anisotropy ------------ fig.shift_origin(yshift=-12) fig.basemap(region=region_oblique, frame=frame, projection=projection, perspective=perspective) pygmt.makecpt(cmap="cool", series=[0, 0.08], background=True) value = epsilon_inv[:,2] grid = pygmt.surface(x=x, y=y, z=value, spacing=spacing,region=region) fig.grdimage(frame=frame,grid = grid,projection=projection, region=region_oblique,perspective=perspective) # nan_transparent may work # tectonic setting fig.coast(region=region_oblique, frame=frame, projection=projection, perspective=perspective, shorelines="1p,black") # coastlines (line_y,line_x) = line_read("tectonics/SAF_creeping") fig.plot(x = line_x, y = line_y, pen = '3.0p,black',perspective = perspective) (line_y,line_x) = line_read("tectonics/SAF_transition") fig.plot(x = line_x, y = line_y, pen = '3.0p,red',perspective = perspective) (line_y,line_x) = line_read("tectonics/SAF_locked") fig.plot(x = line_x, y = line_y, pen = '3.0p,blue',perspective = perspective) # anisotropy if len(ani) > 0: # rotate back to original coordinates x = ani[:,0]; y = ani[:,1] y,x = ffd.rtp_rotation_reverse(y,x,central_lat,central_lon,rotation_angle) ani[:,0] = x; ani[:,1] = y; # no need to modify the angle, because the porjection angle and rotate angle are the same fig.plot(ani, style='j', fill='yellow1', pen='0.5p,black',perspective=perspective) fig.shift_origin(xshift=6,yshift=12) fig.show() fig.savefig("img/imaging_result.png")