{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append(\"../../utils/\")\n", "\n", "from src_rec_file_helper import read_src_rec_file\n", "\n", "events_true = read_src_rec_file(\"./src_rec_test_out.dat\")\n", "events_calc = read_src_rec_file(\"./src_rec_test_out_out.dat\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# check objective function value\n", "v_obj = 0.0\n", "for i_ev in range(len(events_true)):\n", " for i_rec in range(len(events_true[i_ev].rec_list)):\n", " v_obj += abs(events_true[i_ev].rec_list[i_rec].arr_time - events_calc[i_ev].rec_list[i_rec].arr_time)**2/2.0\n", "\n", "print(\"v_obj: \", v_obj)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# calculate summation of difference of arrival times at each receiver\n", "list_diff_v_obj = []\n", "for i_ev in range(len(events_true)):\n", " for i_rec in range(len(events_true[i_ev].rec_list)):\n", " #tmp_v_obj = abs(events_true[i_ev].rec_list[i_rec].arr_time - events_calc[i_ev].rec_list[i_rec].arr_time)**2/2.0\n", " tmp_v_obj = events_true[i_ev].rec_list[i_rec].arr_time - events_calc[i_ev].rec_list[i_rec].arr_time\n", "\n", " if (i_ev == 0):\n", " list_diff_v_obj.append(tmp_v_obj)\n", " else:\n", " list_diff_v_obj[i_rec] += tmp_v_obj\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plot list_diff_v_obj on map\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "# colormap by list_diff_v_obj\n", "cmap = plt.get_cmap('viridis')\n", "norm = plt.Normalize(vmin=min(list_diff_v_obj), vmax=max(list_diff_v_obj))\n", "\n", "print(\"min: \", min(list_diff_v_obj))\n", "print(\"max: \", max(list_diff_v_obj))\n", "\n", "list_lon = []\n", "list_lat = []\n", "\n", "for i_rec in range(len(events_true[0].rec_list)):\n", " list_lon.append(events_true[0].rec_list[i_rec].lon)\n", " list_lat.append(events_true[0].rec_list[i_rec].lat)\n", "\n", "plt.scatter(list_lon, list_lat, c=list_diff_v_obj, cmap=cmap, norm=norm)\n", "\n", "# color bar\n", "plt.colorbar()\n", "\n", "# tight \n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.1 64-bit ('3.9.1')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" }, "vscode": { "interpreter": { "hash": "02f83e1f4cd9619657a6845405e2dd67c4de23753ba48bca5dce2ebf57b3813a" } } }, "nbformat": 4, "nbformat_minor": 2 }