version: 3 ################################################# # computational domian # ################################################# domain: min_max_dep: [-10, 10] # depth in km min_max_lat: [37.7, 42.3] # latitude in degree min_max_lon: [22.7, 27.3] # longitude in degree n_rtp: [10, 50, 50] # number of nodes in depth,latitude,longitude direction ################################################# # traveltime data file path # ################################################# source: src_rec_file: OUTPUT_FILES/src_rec_file_forward.dat ### source receiver file path swap_src_rec: true # swap source and receiver ################################################# # initial model file path # ################################################# model: init_model_path: ./test_model_init.h5 # path to initial model file ################################################# # parallel computation settings # ################################################# parallel: # parameters for parallel computation n_sims: 1 # number of simultanoues runs ndiv_rtp: [1, 2, 2] # number of subdivision on each direction nproc_sub: 2 # number of processors for sweep parallelization use_gpu: false # true if use gpu (EXPERIMENTAL) ############################################ # output file setting # ############################################ output_setting: output_dir: ./OUTPUT_FILES/ # path to output director (default is ./OUTPUT_FILES/) output_source_field: false # output the calculated field of all sources output_model_dat: false # output model_parameters_inv_0000.dat or not. output_final_model: true # output merged final model or not. output_in_process: true # output model at each inv iteration or not. output_in_process_data: false # output src_rec_file at each inv iteration or not. single_precision_output: false # output results in single precision or not. verbose_output_level: 0 # output internal parameters, if 0, only model parameters are out. Higher level, more internal parameters are output. default: 0 output_file_format: 0 # in/output file format, if 0: HDF5, if 1: ASCII ################################################# # inversion or forward modeling # ################################################# # run mode # 0 for forward simulation only, # 1 for inversion # 2 for earthquake relocation # 3 for inversion+earthquake relocation run_mode: 1 ################################################### # model update parameters setting # ################################################### model_update: # update model parameters (when run_mode : 1 and 3) max_iterations: 3 # maximum number of inversion iterations optim_method: 1 # optimization method. 0 : grad_descent, 1 : halve-stepping, 2 : lbfgs (EXPERIMENTAL) # common parameters for all optim methods step_length: 0.01 # step length of model perturbation at each iteration. 0.01 means maximum 1% perturbation for each iteration. # parameters for optim_method 0 (grad_descent) optim_method_0: step_length_decay: 0.9 # if objective function increase, step size -> step length * step_length_decay. default: 0.9 # parameters for optim_method 1 (halve-stepping) or 2 (lbfgs) optim_method_1_2: max_sub_iterations: 10 # maximum number of each sub-iteration regularization_weight: 0.01 # weight value for regularization (lbfgs mode only) coefs_regulalization_rtp: [1.0, 1.0, 1.0] # coefficients for regularization on each direction(lbfgs mode only) # smoothing smoothing: smooth_method: 0 # 0: multiparametrization, 1: laplacian smoothing (EXPERIMENTAL) l_smooth_rtp: [100, 100, 100] # smoothing coefficients for laplacian smoothing # parameters for smooth method 0 (multigrid model parametrization) n_inversion_grid: 5 # number of inversion grid sets # inversion grid type type_invgrid_dep: 0 # 0: uniform inversion grid, 1: flexible grid type_invgrid_lat: 0 # 0: uniform inversion grid, 1: flexible grid type_invgrid_lon: 0 # 0: uniform inversion grid, 1: flexible grid # settings for uniform inversion grid (if type_*_inv : 0) n_inv_dep_lat_lon: [5, 10, 10] # number of the base inversion grid points (ignored if type_*_inv : 1) min_max_dep_inv: [-10, 10] # depth in km (Radius of the earth is defined in config.h/R_earth) (ignored if type_dep_inv : 1) min_max_lat_inv: [37.7, 42.3] # latitude in degree min_max_lon_inv: [22.7, 27.3] # longitude in degree # settings for flexible inversion grid (if type_*_inv : 1) dep_inv: [-10.0, -7.5, -5.0, -2.5, 0.0, 2.5, 5.0, 7.5, 10.0] # depth in km (Radius of the earth is defined in config.h/R_earth) lat_inv: [0.0, 1.0] # latitude in degree (ignored if type_lat_inv : 0) lon_inv: [0.0, 1.0] # longitude in degree (ignored if type_lon_inv : 0) # if we want to use another inversion grid for inverting anisotropy, set invgrid_ani: true (default: false) invgrid_ani: false # settings for flexible inversion grid for anisotropy (only flexible grid input is provided) # dep_inv_ani: [1, 1, 1] # lat_inv_ani: [1, 1, 1] # lon_inv_ani: [1, 1, 1] # inversion grid volume rescale (kernel -> kernel / volume of inversion grid mesh), # this precondition may be carefully applied if the sizes of inversion grids are unbalanced invgrid_volume_rescale: false # path to station correction file (under development) use_sta_correction: false # sta_correction_file: dummy_sta_correction_file # station correction file path #step_length_sc: 0.001 step length relate to the update of station correction terms # path to station correction file #use_sta_correction: false #sta_correction_file: dummy_sta_correction_file # station correction file path # In the following data subsection, XXX_weight means a weight is assigned to the data, influencing the objective function and gradient # XXX_weight : [d1,d2,w1,w2] means: # if XXX < d1, weight = w1 # if d1 <= XXX < d2, weight = w1 + (XXX-d1)/(d2-d1)*(w2-w1), (linear interpolation) # if d2 <= XXX , weight = w2 # You can easily set w1 = w2 = 1.0 to normalize the weight related to XXX. # -------------- using absolute traveltime data -------------- abs_time: use_abs_time: true # 'true' for using absolute traveltime data to update model parameters; 'false' for not using (no need to set parameters in this section) residual_weight: [0, 9999, 1.0, 1.0] # XXX is the absolute traveltime residual (second) = abs(t^{obs}_{n,i} - t^{syn}_{n,j}) distance_weight: [0, 9999, 1.0, 1.0] # XXX is epicenter distance (km) between the source and receiver related to the data # -------------- using common source differential traveltime data -------------- cs_dif_time: use_cs_time: false # 'true' for using common source differential traveltime data to update model parameters; 'false' for not using (no need to set parameters in this section) residual_weight: [0, 0, 0, 0] # XXX is the common source differential traveltime residual (second) = abs(t^{obs}_{n,i} - t^{obs}_{n,j} - t^{syn}_{n,i} + t^{syn}_{n,j}). azimuthal_weight: [0, 0, 0, 0] # XXX is the azimuth difference between two separate stations related to the common source. # -------------- using common receiver differential traveltime data -------------- cr_dif_time: use_cr_time: false # 'true' for using common receiver differential traveltime data to update model parameters; 'false' for not using (no need to set parameters in this section) residual_weight: [0, 0, 0, 0] # XXX is the common receiver differential traveltime residual (second) = abs(t^{obs}_{n,i} - t^{obs}_{m,i} - t^{syn}_{n,i} + t^{syn}_{m,i}) azimuthal_weight: [0, 0, 0, 0] # XXX is the azimuth difference between two separate sources related to the common receiver. # -------------- global weight of different types of data (to balance the weight of different data) -------------- global_weight: balance_data_weight: false # yes: over the total weight of the each type of the data. no: use original weight (below weight for each type of data needs to be set) abs_time_weight: 1 # weight of absolute traveltime data after balance, default: 1.0 cs_dif_time_local_weight: 1 # weight of common source differential traveltime data after balance, default: 1.0 cr_dif_time_local_weight: 1 # weight of common receiver differential traveltime data after balance, default: 1.0 teleseismic_weight: 1 # weight of teleseismic data after balance, default: 1.0 (exclude in this version) # -------------- inversion parameters -------------- update_slowness : true # update slowness (velocity) or not. default: true update_azi_ani : false # update azimuthal anisotropy (xi, eta) or not. default: false #update_rad_ani : false # update radial anisotropy (in future) or not. default: false # -------------- for teleseismic inversion (under development) -------------- # depth_taper : [d1,d2] means: # if XXX < d1, kernel <- kernel * 0.0 # if d1 <= XXX < d2, kernel <- kernel * (XXX-d1)/(d2-d1), (linear interpolation) # if d2 <= XXX , kernel <- kernel * 1.0 # You can easily set d1 = -200, d1 = -100 to remove this taper. depth_taper : [-1e+07, -1e+07] ################################################# # relocation parameters setting # ################################################# relocation: # update earthquake hypocenter and origin time (when run_mode : 2 and 3) min_Ndata: 4 # if the number of data of the earthquake is less than , the earthquake will not be relocated. defaut value: 4 # relocation_strategy step_length : 0.01 # step length of relocation perturbation at each iteration. 0.01 means maximum 1% perturbation for each iteration. step_length_decay : 0.9 # if objective function increase, step size -> step length * step_length_decay. default: 0.9 rescaling_dep_lat_lon_ortime : [10, 1, 1, 0.5] # The perturbation is related to . Unit: km,km,km,second max_change_dep_lat_lon_ortime : [10, 1, 1, 0.5] # the change of dep,lat,lon,ortime do not exceed max_change. Unit: km,km,km,second max_iterations : 501 # maximum number of iterations for relocation tol_gradient : 0.001 # if the norm of gradient is smaller than the tolerance, the iteration of relocation terminates # -------------- using absolute traveltime data -------------- abs_time: use_abs_time : false # 'yes' for using absolute traveltime data to update model parameters; 'no' for not using (no need to set parameters in this section) residual_weight : [0, 0, 0, 0] # XXX is the absolute traveltime residual (second) = abs(t^{obs}_{n,i} - t^{syn}_{n,j}) distance_weight : [0, 0, 0, 0] # XXX is epicenter distance (km) between the source and receiver related to the data # -------------- using common receiver differential traveltime data -------------- cr_dif_time: use_cr_time : false # 'yes' for using common receiver differential traveltime data to update model parameters; 'no' for not using (no need to set parameters in this section) residual_weight : [0, 0, 0, 0] # XXX is the common receiver differential traveltime residual (second) = abs(t^{obs}_{n,i} - t^{obs}_{m,i} - t^{syn}_{n,i} + t^{syn}_{m,i}) azimuthal_weight : [0, 0, 0, 0] # XXX is the azimuth difference between two separate sources related to the common receiver. # -------------- global weight of different types of data (to balance the weight of different data) -------------- global_weight: balance_data_weight: false # yes: over the total weight of the each type of the data. no: use original weight (below weight for each type of data needs to be set) abs_time_local_weight: 1 # weight of absolute traveltime data for relocation after balance, default: 1.0 cr_dif_time_local_weight: 1 # weight of common receiver differential traveltime data for relocation after balance, default: 1.0 #################################################################### # inversion strategy for tomography and relocation # #################################################################### inversion_strategy: # update model parameters and earthquake hypocenter iteratively (when run_mode : 3) inv_mode : 0 # 0 for update model parameters and relocation iteratively. (other options for future work) # for inv_mode : 0, parameters below are required inv_mode_0: # update model for steps, then update location for steps, and repeat the process for loops. model_update_N_iter : 1 relocation_N_iter : 1 max_loop : 10 # --- parameters for core solver --------------------------------------------------------- # --- please do not change the following parameters unless you know what you are doing --- ######################################################################## # Scheme of Eikonal solver (fast sweeping method) # ######################################################################## calculation: convergence_tolerance: 0.0001 # threshold value for checking the convergence for each forward/adjoint run max_iterations: 500 # number of maximum iteration for each forward/adjoint run stencil_order: 3 # order of stencil, 1 or 3 stencil_type: 0 # 0: , 1: first-order upwind scheme (only sweep_type 0 is supported) sweep_type: 1 # 0: legacy, 1: cuthill-mckee with shm parallelization