Files
TomoATT/test/old_tests/inversion_one_src/make_test_model.ipynb
2025-12-17 10:53:43 +08:00

320 lines
10 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# notebook for create init and true test model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import math\n",
"\n",
"# grid\n",
"R_earth = 6378.1370\n",
"\n",
"rr1=6361 \n",
"rr2=6381\n",
"tt1=(38.0-0.3)/180*math.pi\n",
"tt2=(42.0+0.3)/180*math.pi\n",
"pp1=(23.0-0.3)/180*math.pi\n",
"pp2=(27.0+0.3)/180*math.pi\n",
"\n",
"n_rtp = [20,50,50]\n",
"n_rtp.reverse()\n",
"dr = (rr2-rr1)/n_rtp[2]\n",
"dt = (tt2-tt1)/n_rtp[1]\n",
"dp = (pp2-pp1)/n_rtp[0]\n",
"rr = np.array([rr1 + x*dr for x in range(n_rtp[2])])\n",
"tt = np.array([tt1 + x*dt for x in range(n_rtp[1])])\n",
"pp = np.array([pp1 + x*dp for x in range(n_rtp[0])])\n",
"\n",
"# initial model\n",
"gamma = 0.0\n",
"s0 = 1.0/6.0\n",
"slow_p=0.06\n",
"ani_p=0.04\n",
"\n",
"eta_init = np.zeros(n_rtp)\n",
"xi_init = np.zeros(n_rtp)\n",
"zeta_init = np.zeros(n_rtp)\n",
"fun_init = np.zeros(n_rtp)\n",
"vel_init = np.zeros(n_rtp)\n",
"a_init = np.zeros(n_rtp)\n",
"b_init = np.zeros(n_rtp)\n",
"c_init = np.zeros(n_rtp)\n",
"f_init = np.zeros(n_rtp)\n",
"\n",
"# true model\n",
"eta_true = np.zeros(n_rtp)\n",
"xi_true = np.zeros(n_rtp)\n",
"zeta_true = np.zeros(n_rtp)\n",
"fun_true = np.zeros(n_rtp)\n",
"vel_true = np.zeros(n_rtp)\n",
"a_true = np.zeros(n_rtp)\n",
"b_true = np.zeros(n_rtp)\n",
"c_true = np.zeros(n_rtp)\n",
"f_true = np.zeros(n_rtp)\n",
"\n",
"c=0\n",
"for ir in range(n_rtp[2]):\n",
" for it in range(n_rtp[1]):\n",
" for ip in range(n_rtp[0]):\n",
" #eta_init[ip,it,ir] = 0.0\n",
" #xi_init[ip,it,ir] = 0.0\n",
" zeta_init[ip,it,ir] = gamma*math.sqrt(eta_init[ip,it,ir]**2 + xi_init[ip,it,ir]**2)\n",
" fun_init[ip,it,ir] = s0\n",
" vel_init[ip,it,ir] = 1.0/s0\n",
" a_init[ip,it,ir] = 1.0 + 2.0*zeta_init[ip,it,ir]\n",
" b_init[ip,it,ir] = 1.0 - 2.0*xi_init[ip,it,ir]\n",
" c_init[ip,it,ir] = 1.0 + 2.0*xi_init[ip,it,ir]\n",
" f_init[ip,it,ir] = -2.0 * eta_init[ip,it,ir]\n",
"\n",
" # true model\n",
" if (tt[it] >= 38.0/180.0*math.pi and tt[it] <= 42.0/180.0*math.pi \\\n",
" and pp[ip] >= 23.0/180.0*math.pi and pp[ip] <= 27.0/180.0*math.pi):\n",
" c+=1\n",
" sigma = math.sin(2.0*math.pi*(tt[it]-38.0/180.0*math.pi)/(4.0/180.0*math.pi))*math.sin(2.0*math.pi*(pp[ip]-23.0/180.0*math.pi)/(4.0/180.0*math.pi))\n",
" else:\n",
" sigma = 0.0\n",
"\n",
" if sigma < 0:\n",
" psi = 60.0/180.0*math.pi\n",
" elif sigma > 0:\n",
" psi = 120.0/180.0*math.pi\n",
" else:\n",
" psi = 0.0\n",
"\n",
" eta_true[ip,it,ir] = ani_p*abs(sigma)*math.sin(2.0*psi)\n",
" xi_true[ip,it,ir] = ani_p*abs(sigma)*math.cos(2.0*psi)\n",
" zeta_true[ip,it,ir] = gamma*math.sqrt(eta_true[ip,it,ir]**2 + xi_true[ip,it,ir]**2)\n",
" fun_true[ip,it,ir] = s0/(1.0+sigma*slow_p)\n",
" vel_true[ip,it,ir] = 1.0/fun_true[ip,it,ir] \n",
" a_true[ip,it,ir] = 1.0 + 2.0*zeta_true[ip,it,ir]\n",
" b_true[ip,it,ir] = 1.0 - 2.0*xi_true[ip,it,ir]\n",
" c_true[ip,it,ir] = 1.0 + 2.0*xi_true[ip,it,ir]\n",
" f_true[ip,it,ir] = -2.0 * eta_true[ip,it,ir]\n",
"\n",
"\n",
"\n",
"r_earth = 6378.1370\n",
"print(\"depminmax {} {}\".format(r_earth-rr1,r_earth-rr2))\n",
"print(c)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# write out\n",
"import h5py\n",
"\n",
"fout_init = h5py.File('test_model_init.h5', 'w')\n",
"fout_true = h5py.File('test_model_true.h5', 'w')\n",
"\n",
"# write out the arrays eta_init, xi_init, zeta_init, fun_init, a_init, b_init, c_init, f_init\n",
"fout_init.create_dataset('eta', data=eta_init.T)\n",
"fout_init.create_dataset('xi', data=xi_init.T)\n",
"fout_init.create_dataset('zeta', data=zeta_init.T)\n",
"fout_init.create_dataset('fun', data=fun_init.T)\n",
"fout_init.create_dataset('fac_a', data=a_init.T)\n",
"fout_init.create_dataset('fac_b', data=b_init.T)\n",
"fout_init.create_dataset('fac_c', data=c_init.T)\n",
"fout_init.create_dataset('fac_f', data=f_init.T)\n",
"fout_init.create_dataset('vel', data=vel_init.T)\n",
"\n",
"# writeout the arrays eta_true, xi_true, zeta_true, fun_true, a_true, b_true, c_true, f_true\n",
"fout_true.create_dataset('eta', data=eta_true.T)\n",
"fout_true.create_dataset('xi', data=xi_true.T)\n",
"fout_true.create_dataset('zeta', data=zeta_true.T)\n",
"fout_true.create_dataset('fun', data=fun_true.T)\n",
"fout_true.create_dataset('fac_a', data=a_true.T)\n",
"fout_true.create_dataset('fac_b', data=b_true.T)\n",
"fout_true.create_dataset('fac_c', data=c_true.T)\n",
"fout_true.create_dataset('fac_f', data=f_true.T)\n",
"fout_true.create_dataset('vel', data=vel_true.T)\n",
"\n",
"fout_init.close()\n",
"fout_true.close()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# prepare src station file\n",
"\n",
"```\n",
" 26 1992 1 1 2 43 56.900 1.8000 98.9000 137.00 2.80 8 305644 <- src  : id_src year month day hour min sec lat lon dep_km mag num_recs id_event\n",
" 26 1 PCBI 1.8900 98.9253 1000.0000 P 10.40 18.000 <- arrival : id_src id_rec name_rec lat lon elevation_m phase epicentral_distance_km arrival_time_sec\n",
" 26 2 MRPI 1.6125 99.3172 1100.0000 P 50.84 19.400\n",
" 26 3 HUTI 2.3153 98.9711 1600.0000 P 57.84 19.200\n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"random.seed(1145141919810)\n",
"\n",
"# dummys\n",
"year_dummy = 1998\n",
"month_dummy = 1\n",
"day_dummy = 1\n",
"hour_dummy = 0\n",
"minute_dummy = 0\n",
"second_dummy = 0\n",
"mag_dummy = 3.0\n",
"id_dummy = 1000\n",
"st_name_dummy = 'AAAA'\n",
"phase_dummy = 'P'\n",
"dist_dummy = 100.0\n",
"arriv_t_dummy = 0.0\n",
"\n",
"tt1deg = tt1 * 180.0/math.pi\n",
"tt2deg = tt2 * 180.0/math.pi\n",
"pp1deg = pp1 * 180.0/math.pi\n",
"pp2deg = pp2 * 180.0/math.pi\n",
"\n",
"\n",
"n_src = 1\n",
"n_rec = [1 for x in range(n_src)]\n",
"\n",
"\n",
"lines = []\n",
"\n",
"nij_src = math.sqrt(n_src)\n",
"nij_rec = math.sqrt(n_rec[0])\n",
"\n",
"pos_src=[]\n",
"pos_rec=[]\n",
"\n",
"# create dummy src\n",
"for i_src in range(n_src):\n",
" # define one point in the domain (rr1 bottom, rr2 top)\n",
" # random\n",
" #dep = random.uniform((R_earth-rr1)*0.95,(R_earth-rr1)*0.98)\n",
" #lon = random.uniform(pp1deg,pp2deg)\n",
" #lat = random.uniform(tt1deg,tt2deg)\n",
" # regularl\n",
" dep = (R_earth-rr1)*0.9\n",
" tmp_ilon = i_src%nij_src\n",
" tmp_ilat = int(i_src/nij_src)\n",
" lon = pp1deg + tmp_ilon*(pp2deg-pp1deg)/nij_src\n",
" lat = tt1deg + tmp_ilat*(tt2deg-tt1deg)/nij_src\n",
"\n",
" src = [i_src, year_dummy, month_dummy, day_dummy, hour_dummy, minute_dummy, second_dummy, lat, lon, dep, mag_dummy, n_rec[i_src], id_dummy]\n",
" lines.append(src)\n",
"\n",
" pos_src.append([lon,lat,dep])\n",
"\n",
"\n",
" # create dummy station\n",
" for i_rec in range(n_rec[i_src]):\n",
" elev_rec = random.uniform(0.0,-10.0) # elevation in m\n",
" lon_rec = random.uniform(pp1deg,pp2deg)\n",
" lat_rec = random.uniform(tt1deg,tt2deg)\n",
" # regularly\n",
" #elev_rec = -10.0\n",
" #tmp_ilon = i_rec%nij_rec\n",
" #tmp_ilat = int(i_rec/nij_rec)\n",
" #lon_rec = pp1deg + tmp_ilon*(pp2deg-pp1deg)/nij_rec\n",
" #lat_rec = tt1deg + tmp_ilat*(tt2deg-tt1deg)/nij_rec\n",
"\n",
" rec = [i_src, i_rec, st_name_dummy+str(i_rec), lat_rec, lon_rec, elev_rec, phase_dummy, dist_dummy, arriv_t_dummy]\n",
" lines.append(rec)\n",
"\n",
" pos_rec.append([lon_rec,lat_rec,elev_rec])\n",
"\n",
"\n",
"# write out ev_arrivals file\n",
"fname = 'src_rec_test.dat'\n",
"\n",
"with open(fname, 'w') as f:\n",
" for line in lines:\n",
" for elem in line:\n",
" f.write('{} '.format(elem))\n",
" f.write('\\n')\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# draw src and rec positions\n",
"import matplotlib.pyplot as plt\n",
"\n",
"for i_src in range(n_src):\n",
" plt.scatter(pos_src[i_src][1],pos_src[i_src][0],c='r',marker='o')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot receivers\n",
"for i_rec in range(n_rec[0]):\n",
" plt.scatter(pos_rec[i_rec][1],pos_rec[i_rec][0],c='b',marker='o')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.1 64-bit ('3.9.1')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "fbd0b2a7df497f398d93ab2f589d8a5daa3108cfb7ff2b90736653cca3aeadc0"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}