Files
TomoATT/test/old_tests/update_input_file/make_test_model.py
2025-12-17 10:53:43 +08:00

242 lines
6.7 KiB
Python
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# %% [markdown]
# # notebook for create init and true test model
# %%
import numpy as np
import math
# grid
R_earth = 6371.0
rr1=6361
rr2=6381
tt1=(38.0-0.3)/180*math.pi
tt2=(42.0+0.3)/180*math.pi
pp1=(23.0-0.3)/180*math.pi
pp2=(27.0+0.3)/180*math.pi
n_rtp = [10,50,50]
dr = (rr2-rr1)/(n_rtp[0]-1)
dt = (tt2-tt1)/(n_rtp[1]-1)
dp = (pp2-pp1)/(n_rtp[2]-1)
rr = np.array([rr1 + x*dr for x in range(n_rtp[0])])
tt = np.array([tt1 + x*dt for x in range(n_rtp[1])])
pp = np.array([pp1 + x*dp for x in range(n_rtp[2])])
# initial model
gamma = 0.0
s0 = 1.0/6.0
slow_p=0.06
ani_p=0.04
eta_init = np.zeros(n_rtp)
xi_init = np.zeros(n_rtp)
zeta_init = np.zeros(n_rtp)
fun_init = np.zeros(n_rtp)
vel_init = np.zeros(n_rtp)
# true model
eta_true = np.zeros(n_rtp)
xi_true = np.zeros(n_rtp)
zeta_true = np.zeros(n_rtp)
fun_true = np.zeros(n_rtp)
vel_true = np.zeros(n_rtp)
c=0
for ir in range(n_rtp[0]):
for it in range(n_rtp[1]):
for ip in range(n_rtp[2]):
# already initialized above
#eta_init[ir,it,ip] = 0.0
#xi_init[ir,it,ip] = 0.0
zeta_init[ir,it,ip] = gamma*math.sqrt(eta_init[ir,it,ip]**2 + xi_init[ir,it,ip]**2)
fun_init[ir,it,ip] = s0
vel_init[ir,it,ip] = 1.0/s0
# true model
if (tt[it] >= 38.0/180.0*math.pi and tt[it] <= 42.0/180.0*math.pi \
and pp[ip] >= 23.0/180.0*math.pi and pp[ip] <= 27.0/180.0*math.pi):
c+=1
sigma = math.sin(2.0*math.pi*(tt[it]-38.0/180.0*math.pi)/(4.0/180.0*math.pi))*math.sin(2.0*math.pi*(pp[ip]-23.0/180.0*math.pi)/(4.0/180.0*math.pi))
else:
sigma = 0.0
if sigma < 0:
psi = 60.0/180.0*math.pi
elif sigma > 0:
psi = 120.0/180.0*math.pi
else:
psi = 0.0
eta_true[ir,it,ip] = ani_p*abs(sigma)*math.sin(2.0*psi)
xi_true[ir,it,ip] = ani_p*abs(sigma)*math.cos(2.0*psi)
zeta_true[ir,it,ip] = gamma*math.sqrt(eta_true[ir,it,ip]**2 + xi_true[ir,it,ip]**2)
fun_true[ir,it,ip] = s0/(1.0+sigma*slow_p)
vel_true[ir,it,ip] = 1.0/fun_true[ir,it,ip]
#r_earth = 6378.1370
print("depminmax {} {}".format(R_earth-rr1,R_earth-rr2))
print(c)
# %%
# write out in hdf5 format
import h5py
fout_init = h5py.File('test_model_init.h5', 'w')
fout_true = h5py.File('test_model_true.h5', 'w')
# write out the arrays eta_init, xi_init, zeta_init, fun_init, a_init, b_init, c_init, f_init
fout_init.create_dataset('eta', data=eta_init)
fout_init.create_dataset('xi', data=xi_init)
fout_init.create_dataset('zeta', data=zeta_init)
fout_init.create_dataset('vel', data=vel_init)
# writeout the arrays eta_true, xi_true, zeta_true, fun_true, a_true, b_true, c_true, f_true
fout_true.create_dataset('eta', data=eta_true)
fout_true.create_dataset('xi', data=xi_true)
fout_true.create_dataset('zeta', data=zeta_true)
fout_true.create_dataset('vel', data=vel_true)
fout_init.close()
fout_true.close()
# %% [markdown]
# # prepare src station file
#
# The following code creates a src_rec_file for the inversion, which describes the source and receiver positions and arrival times.
# Format is as follows:
#
# ```
# 26 1992 1 1 2 43 56.900 1.8000 98.9000 137.00 2.80 8 305644 <- src  : id_src year month day hour min sec lat lon dep_km mag num_recs id_event
# 26 1 PCBI 1.8900 98.9253 1000.0000 P 10.40 18.000 <- arrival : id_src id_rec name_rec lat lon elevation_m phase epicentral_distance_km arrival_time_sec
# 26 2 MRPI 1.6125 99.3172 1100.0000 P 50.84 19.400
# 26 3 HUTI 2.3153 98.9711 1600.0000 P 57.84 19.200
# ....
#
# ```
# %%
import random
random.seed(1145141919810)
# dummys
year_dummy = 1998
month_dummy = 1
day_dummy = 1
hour_dummy = 0
minute_dummy = 0
second_dummy = 0
mag_dummy = 3.0
id_dummy = 1000
st_name_dummy = 'AAAA'
phase_dummy = 'P'
arriv_t_dummy = 0.0
weight_dummy = 0.444
tt1deg = tt1 * 180.0/math.pi
tt2deg = tt2 * 180.0/math.pi
pp1deg = pp1 * 180.0/math.pi
pp2deg = pp2 * 180.0/math.pi
n_srcs = [10,20,20]
#n_srcs = [2,1,1]
n_src = n_srcs[0]*n_srcs[1]*n_srcs[2]
n_rec = [30 for x in range(n_src)]
lines = []
nij_rec = math.sqrt(n_rec[0])
pos_src=[]
pos_rec=[]
# create receiver coordinates
elev_recs=[]
lon_recs=[]
lat_recs=[]
rec_names=[]
for i in range(n_rec[0]):
#elev_recs.append(random.uniform(-100.0,-100.0)) # elevation in m
#elev_recs.append(0) # elevation in m
#lon_recs .append(random.uniform(pp1deg*1.1,pp2deg*0.9))
#lat_recs .append(random.uniform(tt1deg*1.1,tt2deg*0.9))
rec_names.append(i)
# regularly
elev_recs.append(0.0)
tmp_ilon = i%nij_rec
tmp_ilat = int(i/nij_rec)
lon_recs.append(pp1deg + tmp_ilon*(pp2deg-pp1deg)/nij_rec)
lat_recs.append(tt1deg + tmp_ilat*(tt2deg-tt1deg)/nij_rec)
# create source coordinates
for ir in range(n_srcs[0]):
for it in range(n_srcs[1]):
for ip in range(n_srcs[2]):
i_src = ir*n_srcs[1]*n_srcs[2] + it*n_srcs[2] + ip
# define one point in the domain (rr1 bottom, rr2 top)
# random
#dep = random.uniform((R_earth-rr1)*0.5,(R_earth-rr1)*0.98)
#lon = random.uniform(pp1deg,pp2deg)
#lat = random.uniform(tt1deg,tt2deg)
# regular
dep = (R_earth-rr1)/n_srcs[0]*ir
lon = pp1deg + ip*(pp2deg-pp1deg)/n_srcs[2]
lat = tt1deg + it*(tt2deg-tt1deg)/n_srcs[1]
# put independent name for each source
id_dummy = "src_"+str(i_src)
src = [i_src, year_dummy, month_dummy, day_dummy, hour_dummy, minute_dummy, second_dummy, lat, lon, dep, mag_dummy, n_rec[i_src], id_dummy, weight_dummy]
lines.append(src)
pos_src.append([lon,lat,dep])
# create dummy station
for i_rec in range(n_rec[i_src]):
elev_rec = elev_recs[i_rec]
lon_rec = lon_recs[i_rec]
lat_rec = lat_recs[i_rec]
st_name_dummy = "rec_"+str(rec_names[i_rec])
rec = [i_src, i_rec, st_name_dummy, lat_rec, lon_rec, elev_rec, phase_dummy, arriv_t_dummy, weight_dummy]
lines.append(rec)
pos_rec.append([lon_rec,lat_rec,elev_rec])
# write out ev_arrivals file
fname = 'src_rec_test.dat'
with open(fname, 'w') as f:
for line in lines:
for elem in line:
f.write('{} '.format(elem))
f.write('\n')
# %%
# draw src and rec positions
import matplotlib.pyplot as plt
for i_src in range(n_src):
plt.scatter(pos_src[i_src][1],pos_src[i_src][0],c='r',marker='o')
# %%
# plot receivers
for i_rec in range(n_rec[0]):
plt.scatter(pos_rec[i_rec][1],pos_rec[i_rec][0],c='b',marker='o')
# %%