92 lines
15 KiB
Plaintext
92 lines
15 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Text(0.5, 1.0, 'T for source 1')"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEICAYAAAD8yyfzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmiUlEQVR4nO2df5ClVZnfP9/uaRYUFRBDJgwLZLHiWlZWU1NEi60sC9mEVVaoFDH+WBcNKf7ZMrq6pWiloqbcBCuJSNVmTaaEiClLQLSCazYqQYhalYzya1XAH8gGgYwgQQQUZ6b7PvnjvqM908+ZPqffe9++fef7qbrVfU+fX++973363O9znucoIjDGGDMMC5s9AWOMOZKw0TXGmAGx0TXGmAGx0TXGmAGx0TXGmAGx0TXGmAGx0TW/QNIxkv5c0k8kfWqz52PMPGKjO8dIenrVYyTpmVXP35A0uQg4CXh+RPzjgae76Uh6iaQvSHpMkjewm6lgozvHRMSxBx7AD4DfW1X2iaTJqcB3I2K5dSxJ2/rOdyNMeNz9wPXAJRPs05iDsNE1AEh6P/AvgX/SrYQvkbQg6V9IekDSo5I+Lul5Xf3TJEVX7wfAl5I+T5T0OUlPSHpc0lckLXR/+3VJt3Z/u1vSq1e1u1XSP1v1/E2SvrrqeUj6Q0nfA77XlV0g6S5JT0r6vqTzuvLnSbpK0h5JD0v6gKTF7DWIiO9ExFXA3RN4SY1J2ZTViZk9IuK93VfqMyLi9wEk/VPgTcBvA48CHwf+FHjjqqa/Bfw6MEq6fQfwEPCC7vnLgZC0BPw5cDXwD4DfBG6UtDMivlM55QuBvws8I+nMbm4XATcD24HndPU+1s39DODZwOeAB4H/VDmOMRPFK11zON4AfCgi7o+Ip4F3A6895Cv9+yLipxHxTNJ+P2MDeGpE7I+Ir8Q42cfLgWOByyNiX0R8ibExfF3D3P5NRDzejXsJcHVE3BQRo4h4OCK+Lekk4JXA27o5PgpcAby28XUwZmLY6JrD8TeAB1Y9f4Dxt6OTVpU9eJj2/xa4D/iipPslXbaq3wcjYvXq+AHg5Ia5rR73FOD7SZ1TgSVgTydjPMF4hfvXGsYxZqJYXjCH4/8yNlwH+FVgGXgE2NGVFb38EfEUY4nhHZJeAnxJ0te7fk+RtLDK8P4q8N3u958Cz1rV1V/Pul/1+4PAryV1HgT2AiduxDlozDTwStccjk8CfyTpdEnHAv8auK7WgEk6X9IZkgT8BFhhrP3uBn4GvFPSkqSzgd8Dru2a3gX8I0nPknQG6+8muAp4s6RzO+ffyZJeFBF7gC8C/17Sc7u//Zqk3yrMV5KOBo7qnh8t6VdqrtWYWmx0zeG4GvgvwJeBvwJ+Drylof0Lgf8BPA38L+DPIuKWiNjH2Mj+LvAY8GfAH0TEt7t2VwD7GK+orwGy7W2/ICK+Bry5a/cT4H/yyxX6HzA2ovcAPwZuYKwzZ5wKPMMvdy88A9Q69oypQk5ibowxw+GVrjHGDIiNrjHGDIiNrjHGDIiNrjHGDMig+3RPPGExTj3l4CFb3HjRULuve7CpfeKMHHT86j61qeO3sNnjAw2v1nT6VOWr0NZnUqb6Hko1VTmLlva3f2PvYxHxgqR6Ff/wt58d/+/xlaq6t39j7xci4ryNjtXCoEb31FO28b8/v+OgsmXyF2UlMWSjJLx/pXBjjhp2ZWR9ZIkEiu2TsbKrauuzvm5tvysNH8+VqK87moJ5apnrtFisNHoLDf8iFhsyRmbjZ19NFwsvVVo3KVsqGN3F5D1YKNRdSnpeTOpuS2cAi1o728Xt9z2QVK3mscdX2P2FHetXBJa2f//EPmO14Ig0Y8ycEqxEy1JnGGx0jTFzSQCjmRCqDmZQozsieDr2HlS2v/CfKCut/RpfHj8n+yrfJAUkX8P6fj1v+Xo9qhyrSV5oGn/y/tgh5YVaGaHEgurvlsXkHm4ZfyGRJ7I+IZc9jkrmulBon0khS4WpLib9LiX35YLyCPKlyGWHvmSS5Gbjla4xZi4Jorio20xsdI0xc0lQdrRvJja6xpi55YjXdI0xZiiC3A+02QxqdFcieGp0sOurpLjsr3ytSg6XzJFV2k9a67QpOaxq25fq1TqiitdaGVjY4vDq68ha6elcGw0YLLnQ09mSOZGKdbO9t4X2i8m8MqdZuf3aunvT9vmHbSnRQ0v7jJcyB2FPR9wkmD1F1ytdY8ycEoQ1XWOMGYqI+m/MQ2Kja4yZUzQT4eSHMnBwhPjZIbro/oL2l71YmaZa1jmz9v00zZJ22luTrWxf0jmrNeWG6++rqfbVdIv9TuFD1Dc4okWPzPTjUvs890LP9kndoyIPMcrr5mNlunBfTbgvAYy80jXGmOE44le6xhgzFOPgCBtdY4wZhKAsX24mw+7TRTw1WjqobH8h0UWtplrSU/MkNP00zbZ8tMlcS5psT004I3tdavfzjufUb4UwrX22fbXiaewHLe3zrc2dm+3HhVxTzXTa0jVl8zpKa/XbnxfGT+sWxsp04RZNeGkK70ugpnt+KLzSNcbMLbUZ+IbERtcYM5dY0zXGmEHR1LYu9sFG1xgzl4xPjjjCje4oxFOjow8q21dwpNU6skr/yVpe7KyP/sEVSZ9Np0lk7fuNXxyrYV7TSK7Tl+y96hvwUKLplIjEQVVKLlPbPj2hIXF4ldpnjrDMYQbw88TpVaxb6bTbXzg5onT6RR8iVLQvm4lXusaYuWUaJ1X3ZfbW3sYYMwHGjrSFqkcNkv5I0t2SviXpk5KOlnS6pN2S7pN0naSj1uvHRtcYM6eMHWk1j3V7kk4G/jmwMyJeAiwCrwU+CFwREWcAPwYuWa+vgYMjFnjyEE23pL1mWsy0NvzX6qd9ddK29v2CM6aVsLyvVjuL3uQWmpLbVAY3tCQhz/usT0JzVKKpTiQ4ItNvWTvWYiytKQNYKmi9fZiCI20bcIyk/cCzgD3AOcDru79fA7wP+Mh6nRhjzFzS4Lw+UdJtq57viohdB55ExMOS/h3wA+AZ4IvA7cATEXHgP8ZDwMnrDWSja4yZSwKxP6pN3GMRsbP0R0nHAxcApwNPAJ8CztvIvGx0jTFzyQFH2oT4+8BfRcSPACR9BjgLOE7Stm61uwN4eL2OtrbAZowxBQKxEnWPCn4AvFzSsyQJOBe4B7gFuKirczFw43odDX9yxOhXDiprCo5ocG61OLKm4bTqHVyRZinrl+WsxLT6TceawQQkJWoDGdpOjmjJElZXt+SIy4Im9rLWkVVyYv280hEH9cERpUCOJU0niGFSjrSI2C3pBuAOYBm4E9gF/DfgWkkf6MquWq8vywvGmLkkYrK7ZSLivcB7Dym+HzizpR8bXWPMXDJ2pDkM2BhjBuOIT2K+Egs8OTrmoLLSf6K+OmlT3Snop1n7Jp21d3BFiyY9+YQ3kxhrs6nWdBuCE1oS3mT6Z6rpFpL71CbHWVBuBmo14XHdtVrv/lTTLSS8Ud5vHwLN5P3mla4xZm454le6xhgzFMGwKUZrsdE1xswp2trH9UhaBG4DHo6I8yWdDlwLPJ9xDPIbI2Lf4foYscDTKwcnvCm9KPtHa6fWopM21Z2CfjqdPqe193a4hDd5n5v7wWjRWZuSmGeabkPCm72J1tqSGD3Xb9fWLSZBb0iYnu2zza6r3D4v78P4CPbZ273Q8gl6K3DvqufNKc2MMWYoIsQoFqoeQ1I1mqQdwKuAj3bPxTil2Q1dlWuAC6cwP2OM2TCTyqc7SWrlhQ8D7wSe0z1/PpUpzSRdClwKcNz2o7Mqxhgzccb5dGdP013XxEs6H3g0Im7fyAARsSsidkbEzmNPWPckC2OMmRCTOzliktSsdM8CXi3plcDRwHOBK9lASrNRiJ+NDja8JaF7/2hteeaIKjlh2hLe1P03LGk/udOupyMsaz8DzrFpOL2GXI2UAgmq26cBD5N3rpXGWlpInGOF9nsrHVmZw65UNxu/NIe8fR4cMS1H2mY7aTPW/bRFxLsjYkdEnMb4TKAvRcQb2EBKM2OMGYoDuRdqHkPSZ139LuDtku5jrPGum9LMGGOGZMRC1WNImoIjIuJW4Nbu9+aUZsYYMxTj1I6zJy8MfhrwU4cERyyPSglr1pYvJzpvSQ9s0VSrNd2eYzUloUkT9vRLYjMJfWuoPY0tOm9fnbbYb6VWWwpOqE1406Lp7k0+A0ulJOhZ+1TnzdvvT/TbxVFed9tCnX68VPgqPw1NF2ZT03UYsDFmLhlnGXPuBWOMGYRxGLCNrjHGDIRXuoxC/HT54IMpS9pdtk+3Ze9qX023RVOt1U9b9vnWjnO48o3WOxwxgxpZX9SU8KZfYvIWTXdbtic3ab+vMP62ykMsl0uacJJ0qrRPd1usLV/W2vu9ZU/wJJjFiDSvdI0xc4l3LxhjzMAc8fKCMcYMhc9IM8aYAQlg+Uhf6Y5CPLNy8KmfpS0dtYEQfZ1b4/K603z7jlVyQg3lSJuEE2wWVw4ttDi9ah1sTcERidOsNM5C8hnI+swcZuO6a8uzIIYWR1zJiC0kpiRzBLYEYkwCywvGGDMUYXnBGGMGY1aTmNvoGmPmliN+pTtC/HTl4CTmpYQ32Yu1nCTLmISmm2mdfTXdtM+W9mnNnGlourN4s7bQot2WyLTWJk04KWsJrlhM9Nes7v7C3ZK2H9Vrwpkmuy/RmUt9bEv01FIgRla3L7OaxNwrXWPMXBKouKjbTGx0jTFzizVdY4wZirC8wCjEz5cP3qdb2veXfS3INMlS+6Z9srX7bNPW/TXdvG5hsMr2feqNx5+9m7WFaezHLdVdKLxUtZpweZ/u2ns7Pdiy0F6ZfpvovOWEN2v126w9wLYkYY013RyvdI0xc4uNrjHGDEQgVuxIM8aY4bAjzRhjBiLsSOscaSsHD7nS4EjLviqUXtQseXGLI63FuZXVbXKkVfZZIh+/unl1n7NKmyOsX79NYyVlaXBEwTmVOeiy8bMgiNJY2WeoJThjpXAa8PJC0m/PQIxJMIv3sVe6xpg5ZTYT3syeymyMMRMiQlWPGiQdJ+kGSd+WdK+kV0g6QdJNkr7X/Tx+vX5sdI0xc0kErIxU9ajkSuDzEfEi4DeAe4HLgJsj4oXAzd3zwzKovBBZcERhS0etJlvaEpLpr6OG5DotOmutpjqt9nmf1VULHcze1zIAeiayyTTdvppwqX2uCSf1Cvdlqt8mZdmpuwCLC3WadEkTXkzmtb9B/20JxJhGcARMbveCpOcBfw94E0BE7AP2SboAOLurdg1wK/Cuw/Xlla4xZi4JmuSFEyXdtupx6SHdnQ78CPjPku6U9FFJzwZOiog9XZ0fAietNy870owxc0qTI+2xiNh5mL9vA/4O8JaI2C3pSg6REiIiVPG1yStdY8zcElH3qOAh4KGI2N09v4GxEX5E0naA7uej63U0eBLzvSsHJ9EoabKZuJ1psn0Ti4/7ratbenOq67ZoumnFKWm6/fN9T56eUlzLftySTlzbRXFxk+7JrdN5S/2uVPYJsJw4NjJNeKWQsScrLuq/lf6WUvuVyMv7Mql9uhHxQ0kPSvpbEfEd4Fzgnu5xMXB59/PG9fqyvGCMmUvGuxcm+mX+LcAnJB0F3A+8mbFacL2kS4AHgNes14mNrjFmbum9i+egvuIuINN9z23px0bXGDO3zGIY8Lprb0lHS/qapL+UdLek93flp0vaLek+Sdd1S25jjJkJgrrtYkMb5pqV7l7gnIh4WtIS8FVJ/x14O3BFRFwr6T8ClwAfOVxHEbBv+WBHWilgIQuOSB1phWiSNOFMsW5Slp1ckbYmdXDljrRC8+xNb3DE5X1WV53NQIgpBEGU+y15srJ+k/aFwbLiUeLcKk41cTq1BGdkDrZR5sgrfAazRDiLBafbYpLwJnOaZQ43mLj2+gtm0Ue87pXGmKe7p0vdI4BzGG+bgHEkxoXTmKAxxmyIgBip6jEkVf9eJC1KuovxHrSbgO8DT0TEclflIeDkQttLD0R5LP/kZxOYsjHG1DGL8kKV0Y2IlYh4KbADOBN4Ue0AEbErInZGxM5tz3vWxmZpjDEbYILBEROjafdCRDwh6RbgFcBxkrZ1q90dwMPrtxf7lg8esqSz1uq3xYCFytOES32kXzlKb07P4Ihcv21oX9vnJOpOg/SyWrKNry0qXlKqydYPlb4FxYQ3SWFlEhoAktN4lbXPWzOq1IRLwRVZcvXioQFZIEai/2ba77h88sERB3IvzBo1uxdeIOm47vdjgN9hnNLsFuCirlpVJIYxxgxGMP4vWfMYkJqV7nbgGkmLdNEXEfE5SfcA10r6AHAncNUU52mMMc0MLR3UsK7RjYhvAC9Lyu9nrO8aY8wMMvzOhBockWaMmV+24kp3kkSI5TXBEQXnVpZlLHNYNbQvBiekdbOd7Xn7tG5DcES1pjQl55g22dkQPQMhmjKSNR0HXOl0K/SZXldSt/TyZ06zrM+sHlDtiIvCMdejxBHWEoixUhkwMS6fwj0Ys+lI80rXGDO/HOkrXWOMGRavdI0xZjimkxu9F4Mb3ZXlg3We0mbrTGdNtdcWTbdFk83q9gxuKGqn1cERefO8z/r/8H0l1d701VnTei3jl8oz/bUhuKL2ugqabKSRDJnOWxg+q1upE4/bJ2WFulkgRp5wpxAMtTgdTXcWkzl5pWuMmVu25D5dY4zZstjoGmPMgBzp8kLE2kQ2o5XCi1Kt6RYGa9B/U/21KeFN3fhFObJaEy60r+2zWHfAGzPbZ9rUvq528ZL6ar1pFvHCi51lNsluq9I9nLXPPi8lTTgdP/lcFdqnyXUK2VoUa/cEZ/t/M+0XprefdtP9FQle6Rpj5pNQeaG1idjoGmPmF690jTFmQGx0jTFmQI54oxtitHywxhIrBWU+09tbnGNJ+2JwQuVYKgZXZGPV9Vms2zM4oknJGvLGbAmESKidavk04KTPhpODs37TIIbCWGlZ6SiByrplR1yl068QsJAGUvR0umUOt3HHUwgdc3CEMcYMi3cvGGPMkNjoGmPMcHilGxCHJLwparLZJvDaIAaAlYa6qf6b1StosmlynKRePnr9+CX66r8D3ph9JbZUPu15mm9Z/00CCWrnBLl+nJ4GXNJU6/osasKZ/pvVLb3/2X3dU/8tJVyPxXXPyN0Y1nSNMWYgAssLxhgzKDa6xhgzHMVtnpvI8Eb3UK22pJNmmm7t3l1AqaabTynVelt01lRrrqtX7DfRovomzGmhr85bTKxdPYGGwXpquqWLrdZ/S3mUsn2qWSKn0mtVqQmXdNZU660tYzr6byyWToed0pLUK11jjBkGhXcvGGPMsHj3gjHGDIhXusYYMxyWF4I1jrTUYQa5IyupW3SO1TriyN+YtN8GR1weXFE/fotzrPrGGvAG7P2lrrdzrKHbUnBCbcKZoiMsCxioHj53ZGX3WosjrzZgAiDLTdPX6Vbyo00jNiK8e8EYY4ZlBle6U4q9M8aYGSAqH5VIWpR0p6TPdc9Pl7Rb0n2SrpN01Hp92OgaY+aWA9vG1ns08Fbg3lXPPwhcERFnAD8GLlmvg4HlBa3VWguabm1wQ0kTTusWTw7O6jbox7UJbxqSoKfjtARnTCFgYlCmpOm27CDKE5bX1QOIJDggD3gojV+nCRfbJ+93eqJ2aemV3S8NyXUyTbgYA7EF7k1JO4BXAX8CvF3jTEXnAK/vqlwDvA/4yOH68UrXGDO/TFZe+DDwTn65THs+8ERELHfPHwJOXq8TG11jzHzS7V6oeQAnSrpt1ePS1V1JOh94NCJu7zutdeUFSacAHwdOGl8GuyLiSkknANcBpwH/B3hNRPy474SMMWZi1K9iH4uInYf5+1nAqyW9EjgaeC5wJXCcpG3dancH8PB6A9VousvAOyLiDknPAW6XdBPwJuDmiLhc0mXAZcC7DttTgA45mLK4dzXbk9uUxKauz2Ldpn26SVnLPttaTbivpltiFvW0ITXdvodYNozVtk83+Qykmm4hYU9lcpvSvRLJBZTGSpPbZPdlaZ9v4bzKPojJBUdExLuBdwNIOhv444h4g6RPARcB1wIXAzeu19e68kJE7ImIO7rfn2LsuTsZuICxcEz388LG6zDGmOky4S1jCe9i7FS7j7HGe9V6DZp2L0g6DXgZsBs4KSL2dH/6IWP5wRhjZoMpZRmLiFuBW7vf7wfObGlfbXQlHQt8GnhbRDy5+lyniAhl+1vG7S4FLgVYPP74lrkZY0w/ZjAMuGr3gqQlxgb3ExHxma74EUnbu79vBx7N2kbErojYGRE7F4999iTmbIwxVUwhOKI3NbsXxFinuDciPrTqT59lLBxfTqWATKx1hrU4t/IkOPlQCy0Jb2oDMVocYQ3BGVNJeLOVnGt9T/Nt6HMajrRycENd3WL75H7JnWOFz1Cl060p4U3pRO2krhJPWiwOnN92Bp3ENfLCWcAbgW9Kuqsrew9jY3u9pEuAB4DXTGWGxhizEfo7yabCukY3Ir5KeS1w7mSnY4wxk8P5dI0xZkhsdNdquOUk5LVlDQEPBf03e2MWsrotwREtCXdqk+MUNd0ss0lWrzB+5ZymRt9AiIY+IxNaWzTdhiTmtQnPi5pqpf5bGj8NOKgMuAAYJfdVMbghK0svthSJMR2t10nMjTFmKLaqpmuMMVsR0fQlajBsdI0x84tXusYYMxxH/O4FJadzlpxbtU6zpvYlR1T1KRWF9n2zlGUOiyZHWmXdlvYlpnETD+hIyy626IiqzAiWZQMrzaElOKI6S1jJEZZNKQu4KGT4WsiyjC2WHGFJWdZv8Q2cknU80o2uMcYMRrLImwVsdI0x84tXusYYMxxHvKYLWcKbUr3KkyNadNaedZsCOUaVOi2FG6Nvwp0BgyPS4IxSt6VjEqoHy/rs2b6kqVYmx2k7uaE+OKFW/y3NP5tWWrf09qV16xPepB0Xb5Upbe6y0TXGmOHwStcYY4YimMkk5ja6xpi5ZJIHU06SYY1u8p+nmLCmNuFNg86aJrFp6Fcr+Ts4ldOEm5Kg90x401f/baJfx9U6a1Ni8p77bBv2+WZCa0mTHSUJv/PE5IXxk5d6lCYbL4yfF6dkfWQJb0alfb7T4og3usYYMyAtTt6hsNE1xswnzjJmjDHDYk3XGGMGxGHArD2lt+gcqnUuFU8Drq9bHdzQ1xHXdK09gyvS0yjq/+23ON0GpdZpVnCO5XXrgxvykx8KY9U6vYrBDZVOt9IJu9mJKJnDq5jwpr5urXS6UAiCGDnhjTHGbHHC8oIxxgyLja4xxgyDgyOgEByRV63VRJsCHop1174zLacBp/rxFIIrSppsdmNN4zThEtNwVhRPyE0nkLRvCo6on0Om37YkvMnbF8avTFgTBUE1Da7IAiZK73VBv50G6psIqdRvgx9jKLzSNcbMJ96na4wxw+ItY8YYMyRe6Sa6asthkQ06a4umWrunty25TsM+28q5lpOYV+4pnoSmO1BynL6JyYt7bxPtsLT3tP/BknUJX8qabtY+q5i3T/f5Ju3Le2eHY0qSrh1pxhgzGEF91MaA2OgaY+YWa7rGGDMQ3qdrjDFDEmF5QbF2ud834U05OKLekZWevNuUXKfOkVXaqJ0HVzQk3Mn6bTpNuH7HfPXKoe+93uBYSZ1uLUloCq9rlogmbV9KAlN58m4xYU7q4Kx3BNZ/sy7cl8mb0PRtvSEQpXRv98UrXWOMGRIbXWOMGY5ZXOmuG+Eu6WpJj0r61qqyEyTdJOl73c/jpztNY4xpJICVqHusg6RTJN0i6R5Jd0t6a1febAtrVrofA/4U+PiqssuAmyPickmXdc/fVdHXmv88fRPetAVH5HVrgyMy7balbosmu7Bcp9OW2rdo2i3BEWndNLlOzyVGy275ysQyUAiOKAUnZMnBk7ql1zXXdDNNtpCwJhFFF5I3Jqs3rpv12UJyX5YCKbLi7HNRGGlaO7smuNJdBt4REXdIeg5wu6SbgDfRaAvXXelGxJeBxw8pvgC4pvv9GuDCpukbY8wQHNjBsN5j3W5iT0Tc0f3+FHAvcDIbsIUb1XRPiog93e8/BE4qVZR0KXApwLbnWoUwxgxHw0r3REm3rXq+KyJ2pX1KpwEvA3bTYAsP0NuRFhEhlS+tm/gugGO2nzKDsrYxZi5pS+34WETsXK+SpGOBTwNvi4gnV+cBXs8WHmCjRvcRSdsjYo+k7cCjtQ3X7NMtTbFSky0m9m5JWJPu/63XZGvrpjot9Xtyi9ea9Fur8wLp16ti8uc04U3D/9LapNINmmwmM5aSYqf7RAsHO8ZKsk81qZtqv5AmAU8Pe2xILpQlwSl1kGvCWb16mvbZtuzTbUlaX4k4zD2/kf6kJcYG9xMR8ZmuuNkWbvRSPwtc3P1+MXDjBvsxxpipoYiqx7r9jP+LXwXcGxEfWvWnZlu47kpX0ieBsxlrHg8B7wUuB66XdAnwAPCadWdtjDFDMtmTI84C3gh8U9JdXdl72IAtXNfoRsTrCn86t2qqxhizKUwu90JEfJVycHqTLXREmjFmbpnFiLTNPw24wbmVOnF6JswZl9cFEhQdWZV1m5x+y2s7LQZnZGOlwRWl8deOVXZwJhfb4InJ9LPUOVZqn3khUudawTmWOcLSnf2kzryFJOIhSsER2VuQJqcpBTdkgRBJ68K1ZvdL5lwrvvxZbEjhHhxlnWT3dWmsaUVHHOlZxowxZjBisrsXJoWNrjFmfpk9m2uja4yZX5r2kA/E8KcBH/oaFJOwJGWV2iswFf23fBpwXcKaYsKbSv021WkpaLKpzlu4gDQ5TotQmcyp4WZvOQg21X8znXehsAU90W9VqJvqv1nAwrbSabpr+20LTqjTX4s6a9o+uVeTIBAoJLEpBTdk/oJkssXkQNZ0jTFmi5M47mcBG11jzFwi6qLNhsZG1xgzv5Rksk1keKN7aBLzloQ3lXt3S3X777MtjJVptVmfBU21Vr/NtNtSv6nOW9o+k7Uv3azZHFKhczorjHRP6mJDZvFtSd0sCw2Us5uv7aBQunYOtTov5JrqwnJSryC0Zvqtsk4LH8KsbjFhTXZbNLwtRd9MHywvGGPMsFheMMaYIbHRNcaYoZhcwptJYqNrjJlPgqqTfodm8IQ3awTzhlNn84CJUvu6smIflcEZpfImR1xt+4IjLnWaZc6xUnBE5jRbziM5UmdeGjAxJQ9GFsiwnJ3mkLunFJXHOcAEHISZ0yxxrhWOTUiTw2R+sOJ9VRmc0OAcK57wUOmMLp3SPK1sYNZ0jTFmSGx0jTFmIIL6M/kGxEbXGDOn2JE2pjY4Iitv0mkzPa40VmUS80LCmnReaRKZwgTS04TrktgUx8r024JOy8rachXrZknMK8ug/kNQynadabpJmUaFJDbZ+ItpZvFc6kwTptfr15GIoipoytn9lmmibYmc6nXWlqRRaRxJw+d1arbRRtcYYwYiyBcJm4yNrjFmTokp5ozcODa6xpj5xfKCMcYMhHcvFCgGR1TWbXDEFZ1uad0sOKMhOKKyz1L79GZpyBKWOrIShxkUnGYlR9ry2jRXkTrXCu1rPwQl587CWqeXskCIyG/trNfijLI5JIEYZadfpTO15CBNnWZ1J3dA6R5M+mxwRjc53VpiS+xIM8aYOcBG1xhjBiKi+O1uM7HRNcbML0f6SlckOs8ENNlqegZi9Nafm04urj+hN9WK05MjGk6DSLRbgMjKa3VeqF95lAIWFte2j0S/LZ4wnJ1QW9BkYyF5DbPgjFIgSHbyQt/7oq9O2uIXaaB6Xi2foUlwpBtdY4wZjvDuBWOMGYyAcHCEMcYMiMOAJ0/b3tu2PvqQ6qylfbq1dUv6VN/2iSZZ1mSTuvsTTbegCffVdNmW6LdJEpkoZGbRYuWxtdD/da3c650m4SnVLavVVfT9XBQT1mx8StMjwkewG2PMoNiRZowxwxEzuNItnXhUhaTzJH1H0n2SLpvUpIwxpj9dEvOax4Bs2OhKWgT+A/C7wIuB10l68aQmZowxvTiQ8KbmMSB95IUzgfsi4n4ASdcCFwD3TGJim03DYQCbT1+HT9NYlacBFxxmRQfbIRTdRZmDre+2oL4Oyhklu4ezw5DnlQBiBsOA+8gLJwMPrnr+UFdmjDGbT3RJzGseAzJ1R5qkS4FLAZaec/y0hzPGmF8QMxiR1mel+zBwyqrnO7qyg4iIXRGxMyJ2bjvm2T2GM8aYRmZwpavSxux1G0rbgO8C5zI2tl8HXh8Rdx+mzY+AB7qnJwKPbWjw2WUerwnm87rm8Zpgvq7r1Ih4wUYbS/o849ejhsci4ryNjtXCho0ugKRXAh8GFoGrI+JPGtreFhE7Nzz4DDKP1wTzeV3zeE0wv9c1T/TSdCPiL4C/mNBcjDFm7ukVHGGMMaaNzTS6uzZx7Gkxj9cE83ld83hNML/XNTf00nSNMca0YXnBGGMGxEbXGGMGZHCjOy+ZySRdLelRSd9aVXaCpJskfa/7uaVC8CSdIukWSfdIulvSW7vyrX5dR0v6mqS/7K7r/V356ZJ2d/fidZKO2uy5tiJpUdKdkj7XPd/y1zTvDGp05ywz2ceAQzdTXwbcHBEvBG7unm8lloF3RMSLgZcDf9i9P1v9uvYC50TEbwAvBc6T9HLgg8AVEXEG8GPgks2b4oZ5K3DvqufzcE1zzdAr3V9kJouIfcCBzGRbjoj4MvD4IcUXANd0v18DXDjknPoSEXsi4o7u96cYf5hPZutfV0TE093Tpe4RwDnADV35lrsuSTuAVwEf7Z6LLX5NRwJDG915z0x2UkTs6X7/IXDSZk6mD5JOA14G7GYOrqv7Gn4X8ChwE/B94ImIOJBrciveix8G3gkcSB7wfLb+Nc09dqRNiRjvxduS+/EkHQt8GnhbRDy5+m9b9boiYiUiXso4MdOZwIs2d0b9kHQ+8GhE3L7ZczFtDH1GWlVmsi3MI5K2R8QeSdsZr6q2FJKWGBvcT0TEZ7riLX9dB4iIJyTdArwCOE7Stm5luNXuxbOAV3f5T44Gngtcyda+piOCoVe6Xwde2HlYjwJeC3x24DlMk88CF3e/XwzcuIlzaabTBK8C7o2ID63601a/rhdIOq77/Rjgdxjr1bcAF3XVttR1RcS7I2JHRJzG+HP0pYh4A1v4mo4UBo9I65OZbJaQ9EngbMap4x4B3gv8V+B64FcZp7B8TUQc6mybWST9JvAV4Jv8Uid8D2Nddytf199m7FRaZLzQuD4i/pWkv8nYmXsCcCfw+xGxd/NmujEknQ38cUScPy/XNM84DNgYYwbEjjRjjBkQG11jjBkQG11jjBkQG11jjBkQG11jjBkQG11jjBkQG11jjBmQ/w/RS+7C32l4bgAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# final model\n",
|
|
"fpath_T = './OUTPUT_FILES/out_data_sim.h5'\n",
|
|
"\n",
|
|
"import h5py\n",
|
|
"\n",
|
|
"# source id to be retrieved\n",
|
|
"i_src = 0\n",
|
|
"# dataset name\n",
|
|
"dsetname = 'T_res_merged_inv_0000'\n",
|
|
"\n",
|
|
"# read vel, xi, eta dataset \n",
|
|
"with h5py.File(fpath_T, 'r') as f:\n",
|
|
" T = f['src_{}'.format(i_src)][dsetname][:]\n",
|
|
"\n",
|
|
"# plot\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"# plot T\n",
|
|
"plt.figure()\n",
|
|
"plt.imshow(T[5,:,:], origin='lower', aspect='auto')\n",
|
|
"plt.colorbar()\n",
|
|
"plt.title('T for source {}'.format(i_src))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3.9.1 64-bit ('3.9.1')",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "02f83e1f4cd9619657a6845405e2dd67c4de23753ba48bca5dce2ebf57b3813a"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|