update to stable version
This commit is contained in:
parent
b3367003d0
commit
2a69d72aec
380
delaunay.h
380
delaunay.h
@ -12,8 +12,6 @@
|
||||
#include "cmath"
|
||||
#include "vector"
|
||||
|
||||
#include "iostream"
|
||||
|
||||
#define ZERO 1e-5
|
||||
|
||||
// Start vertex definition
|
||||
@ -39,63 +37,55 @@ bool operator ==(const vertex2dc &a, const vertex2dc &b) // overload the == oper
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void circumcircle(vertex2dc *v0, vertex2dc *v1, vertex2dc *v2, double &cx, double &cy, double &cr) // calculate the circumcircle from three points
|
||||
{
|
||||
double s = 0.5 / ((v1->x - v0->x) * (v2->y - v0->y) - (v1->y - v0->y) * (v2->x - v0->x));
|
||||
double m = v1->x*v1->x - v0->x*v0->x + v1->y*v1->y - v0->y*v0->y;
|
||||
double u = v2->x*v2->x - v0->x*v0->x + v2->y*v2->y - v0->y*v0->y;
|
||||
|
||||
cx = ((v2->y - v0->y)*m + (v0->y - v1->y)*u)*s;
|
||||
cy = ((v0->x - v2->x)*m + (v1->x - v0->x)*u)*s;
|
||||
cr = (v0->x - cx)*(v0->x - cx) + (v0->y - cy)*(v0->y - cy); // not need to calculate the squared root here
|
||||
return;
|
||||
}
|
||||
// End vertex definition
|
||||
|
||||
// Start edge definition
|
||||
struct edge
|
||||
{
|
||||
vertex2dc *vert[2]; // vertex of the edge
|
||||
|
||||
edge() {vert[0] = vert[1] = nullptr;}
|
||||
edge(vertex2dc *v0ptr, vertex2dc *v1ptr) {set(v0ptr, v1ptr);}
|
||||
void set(vertex2dc *v0ptr, vertex2dc *v1ptr)
|
||||
{
|
||||
vert[0] = v0ptr; vert[1] = v1ptr;
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
bool operator ==(const edge &a, const edge &b) // overload the == operator for edge type
|
||||
{
|
||||
if((a.vert[0] == b.vert[0] && a.vert[1] == b.vert[1]) ||
|
||||
(a.vert[0] == b.vert[1] && a.vert[1] == b.vert[0]))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// End edge definition
|
||||
|
||||
// Start triangle definition
|
||||
struct triangle
|
||||
{
|
||||
int id;
|
||||
vertex2dc *vert[3]; // vertex of the triangle
|
||||
triangle *neigh[3]; // neighbors of the triangle
|
||||
double cx, cy; // center of the triangle's circumcircle
|
||||
double cr; // radius of the circumcircle
|
||||
|
||||
triangle() {vert[0] = vert[1] = vert[2] = nullptr; neigh[0] = neigh[1] = neigh[2] = nullptr;}
|
||||
triangle() {vert[0] = vert[1] = vert[2] = nullptr;}
|
||||
triangle(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) {set(v0ptr, v1ptr, v2ptr);}
|
||||
void set(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr)
|
||||
{
|
||||
vert[0] = v0ptr; vert[1] = v1ptr; vert[2] = v2ptr;
|
||||
neigh[0] = neigh[1] = neigh[2] = nullptr;
|
||||
|
||||
circumcircle(vert[0], vert[1], vert[2], cx, cy, cr);
|
||||
double s = 0.5 / ((vert[1]->x - vert[0]->x) * (vert[2]->y - vert[0]->y) - (vert[1]->y - vert[0]->y) * (vert[2]->x - vert[0]->x));
|
||||
double m = vert[1]->x * vert[1]->x - vert[0]->x * vert[0]->x + vert[1]->y * vert[1]->y - vert[0]->y * vert[0]->y;
|
||||
double u = vert[2]->x * vert[2]->x - vert[0]->x * vert[0]->x + vert[2]->y * vert[2]->y - vert[0]->y * vert[0]->y;
|
||||
|
||||
cx = ((vert[2]->y - vert[0]->y) * m + (vert[0]->y - vert[1]->y) * u) * s;
|
||||
cy = ((vert[0]->x - vert[2]->x) * m + (vert[1]->x - vert[0]->x) * u) * s;
|
||||
cr = (vert[0]->x - cx) * (vert[0]->x - cx) + (vert[0]->y - cy) * (vert[0]->y - cy); // not need to sqrt() here
|
||||
return;
|
||||
}
|
||||
|
||||
void set_neighbor(triangle *n0ptr, triangle *n1ptr, triangle *n2ptr)
|
||||
{
|
||||
neigh[0] = n0ptr; neigh[1] = n1ptr; neigh[2] = n2ptr;
|
||||
return;
|
||||
}
|
||||
|
||||
bool bound_location(double inx, double iny) // Test if the location is inside the triangle
|
||||
{
|
||||
double l1x, l1y, l2x, l2y;
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
l1x = vert[(i+1)%3]->x - vert[i]->x;
|
||||
l1y = vert[(i+1)%3]->y - vert[i]->y;
|
||||
l2x = inx - vert[i]->x;
|
||||
l2y = iny - vert[i]->y;
|
||||
|
||||
if ((l1x*l2y - l1y*l2x) < 0) // This condition includes points on the triangle's edge
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
// End triangle definition
|
||||
|
||||
@ -105,7 +95,7 @@ struct triangle
|
||||
* @param in_verts Input vertexes. Defined by the user.
|
||||
* @param out_tris Output triangles. Compute by the function.
|
||||
*/
|
||||
void triangulation(std::vector<vertex2dc> &in_verts, std::vector<triangle*> &out_tris)
|
||||
void triangulation(std::vector<vertex2dc> &in_verts, std::vector<triangle> &out_tris)
|
||||
{
|
||||
if (!out_tris.empty()) out_tris.clear();
|
||||
if (in_verts.size() < 3) return;
|
||||
@ -128,259 +118,117 @@ void triangulation(std::vector<vertex2dc> &in_verts, std::vector<triangle*> &out
|
||||
vertex2dc *tmp_vert = nullptr;
|
||||
std::vector<vertex2dc*> assit_vert;
|
||||
|
||||
tmp_vert = new vertex2dc(midx - maxi_s, midy - maxi_s, 99990); // lower left corner
|
||||
tmp_vert = new vertex2dc(midx - maxi_s, midy - maxi_s); // lower left corner
|
||||
assit_vert.push_back(tmp_vert);
|
||||
|
||||
tmp_vert = new vertex2dc(midx + maxi_s, midy - maxi_s, 99991); // lower right corner
|
||||
tmp_vert = new vertex2dc(midx + maxi_s, midy - maxi_s); // lower right corner
|
||||
assit_vert.push_back(tmp_vert);
|
||||
|
||||
tmp_vert = new vertex2dc(midx + maxi_s, midy + maxi_s, 99992); // upper right corner
|
||||
tmp_vert = new vertex2dc(midx + maxi_s, midy + maxi_s); // upper right corner
|
||||
assit_vert.push_back(tmp_vert);
|
||||
|
||||
tmp_vert = new vertex2dc(midx - maxi_s, midy + maxi_s, 99993); // upper left corner
|
||||
tmp_vert = new vertex2dc(midx - maxi_s, midy + maxi_s); // upper left corner
|
||||
assit_vert.push_back(tmp_vert);
|
||||
|
||||
triangle *old_tri = nullptr, *tmp_tri = nullptr;
|
||||
triangle *cnst_tri[3], *old_neigh[6];
|
||||
triangle *tmp_tri = nullptr;
|
||||
std::vector<triangle*> exist_tri, cnst_tri;
|
||||
std::vector<triangle*>::iterator t_iter;
|
||||
|
||||
tmp_tri = new triangle(assit_vert[0], assit_vert[1], assit_vert[2]); // order the vertex anti-clock wise
|
||||
out_tris.push_back(tmp_tri);
|
||||
exist_tri.push_back(tmp_tri);
|
||||
|
||||
tmp_tri = new triangle(assit_vert[0], assit_vert[2], assit_vert[3]); // order the vertex anti-clock wise
|
||||
out_tris.push_back(tmp_tri);
|
||||
|
||||
out_tris[0]->set_neighbor(nullptr, nullptr, out_tris[1]);
|
||||
out_tris[1]->set_neighbor(out_tris[0], nullptr, nullptr);
|
||||
exist_tri.push_back(tmp_tri);
|
||||
|
||||
// loop all input vertice
|
||||
bool removed;
|
||||
double dist;
|
||||
edge tmp_edge;
|
||||
std::vector<edge> cnst_edge;
|
||||
std::vector<edge>::iterator e_iter;
|
||||
for (int i = 0; i < in_verts.size(); ++i)
|
||||
{
|
||||
// determine the triangle that includes the new vertex and remove it from out_tris
|
||||
for (t_iter = out_tris.begin(); t_iter != out_tris.end(); )
|
||||
{
|
||||
old_tri = *t_iter;
|
||||
if (old_tri->bound_location(in_verts[i].x, in_verts[i].y))
|
||||
{
|
||||
t_iter = out_tris.erase(t_iter);
|
||||
break;
|
||||
}
|
||||
else t_iter++;
|
||||
}
|
||||
|
||||
// build three new triangles
|
||||
for (int n = 0; n < 3; ++n)
|
||||
{
|
||||
tmp_tri = new triangle(old_tri->vert[n], old_tri->vert[(n+1)%3], &in_verts[i]);
|
||||
cnst_tri[n] = tmp_tri;
|
||||
out_tris.push_back(tmp_tri);
|
||||
}
|
||||
|
||||
// sort neighbors
|
||||
for (int n = 0; n < 3; ++n)
|
||||
{
|
||||
if (old_tri->neigh[n] == nullptr)
|
||||
{
|
||||
cnst_tri[n]->set_neighbor(nullptr, cnst_tri[(n+1)%3], cnst_tri[(n+2)%3]);
|
||||
}
|
||||
else
|
||||
{
|
||||
cnst_tri[n]->set_neighbor(old_tri->neigh[n], cnst_tri[(n+1)%3], cnst_tri[(n+2)%3]);
|
||||
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
|
||||
{
|
||||
if (old_tri->neigh[n]->neigh[k] == old_tri)
|
||||
{
|
||||
old_tri->neigh[n]->neigh[k] = cnst_tri[n];
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// delete the old triangle
|
||||
delete old_tri; old_tri = nullptr;
|
||||
|
||||
// test if the cnst_tri need to be flipped
|
||||
for (int n = 0; n < 3; ++n)
|
||||
{
|
||||
if (cnst_tri[n]->neigh[0] != nullptr) // must has neighbor on this side
|
||||
{
|
||||
old_tri = cnst_tri[n]->neigh[0];
|
||||
for (int v = 0; v < 3; ++v)
|
||||
{
|
||||
tmp_vert = old_tri->vert[v];
|
||||
if (tmp_vert != cnst_tri[n]->vert[0] && tmp_vert != cnst_tri[n]->vert[1]) // find the opposite vertex
|
||||
{
|
||||
//dist = (cnst_tri[n]->cx - tmp_vert->x) * (cnst_tri[n]->cx - tmp_vert->x) +
|
||||
// (cnst_tri[n]->cy - tmp_vert->y) * (cnst_tri[n]->cy - tmp_vert->y);
|
||||
|
||||
//if ((dist - cnst_tri[n]->cr) <= ZERO) // need to be flipped
|
||||
|
||||
dist = (old_tri->cx - cnst_tri[n]->vert[2]->x) * (old_tri->cx - cnst_tri[n]->vert[2]->x) +
|
||||
(old_tri->cy - cnst_tri[n]->vert[2]->y) * (old_tri->cy - cnst_tri[n]->vert[2]->y);
|
||||
|
||||
if ((dist - old_tri->cr) <= ZERO) // need to be flipped
|
||||
{
|
||||
// record the original neighbors
|
||||
old_neigh[0] = cnst_tri[n]->neigh[0];
|
||||
old_neigh[1] = cnst_tri[n]->neigh[1];
|
||||
old_neigh[2] = cnst_tri[n]->neigh[2];
|
||||
old_neigh[3] = old_tri->neigh[0];
|
||||
old_neigh[4] = old_tri->neigh[1];
|
||||
old_neigh[5] = old_tri->neigh[2];
|
||||
|
||||
cnst_tri[n]->set(cnst_tri[n]->vert[0], tmp_vert, cnst_tri[n]->vert[2]); // flip
|
||||
|
||||
if (v == 0)
|
||||
{
|
||||
old_tri->set(old_tri->vert[0], old_tri->vert[1], cnst_tri[n]->vert[2]); //flip
|
||||
|
||||
// Sort neighbors
|
||||
cnst_tri[n]->set_neighbor(old_neigh[5], old_tri, old_neigh[2]);
|
||||
old_tri->set_neighbor(old_neigh[3], old_neigh[1], cnst_tri[n]);
|
||||
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (cnst_tri[n]->neigh[0] != nullptr && cnst_tri[n]->neigh[0]->neigh[k] == old_tri)
|
||||
{
|
||||
cnst_tri[n]->neigh[0]->neigh[k] = cnst_tri[n];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (old_tri->neigh[1] != nullptr && old_tri->neigh[1]->neigh[k] == cnst_tri[n])
|
||||
{
|
||||
old_tri->neigh[1]->neigh[k] = old_tri;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (v == 1)
|
||||
{
|
||||
old_tri->set(cnst_tri[n]->vert[2], old_tri->vert[1], old_tri->vert[2]); //flip
|
||||
|
||||
// Sort neighbors
|
||||
cnst_tri[n]->set_neighbor(old_neigh[3], old_tri, old_neigh[2]);
|
||||
old_tri->set_neighbor(cnst_tri[n], old_neigh[4], old_neigh[1]);
|
||||
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (cnst_tri[n]->neigh[0] != nullptr && cnst_tri[n]->neigh[0]->neigh[k] == old_tri)
|
||||
{
|
||||
cnst_tri[n]->neigh[0]->neigh[k] = cnst_tri[n];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (old_tri->neigh[2] != nullptr && old_tri->neigh[2]->neigh[k] == cnst_tri[n])
|
||||
{
|
||||
old_tri->neigh[2]->neigh[k] = old_tri;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
old_tri->set(old_tri->vert[0], cnst_tri[n]->vert[2], old_tri->vert[2]); //flip
|
||||
|
||||
// Sort neighbors
|
||||
cnst_tri[n]->set_neighbor(old_neigh[4], old_tri, old_neigh[2]);
|
||||
old_tri->set_neighbor(old_neigh[1], cnst_tri[n], old_neigh[5]);
|
||||
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (cnst_tri[n]->neigh[0] != nullptr && cnst_tri[n]->neigh[0]->neigh[k] == old_tri)
|
||||
{
|
||||
cnst_tri[n]->neigh[0]->neigh[k] = cnst_tri[n];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (old_tri->neigh[0] != nullptr && old_tri->neigh[0]->neigh[k] == cnst_tri[n])
|
||||
{
|
||||
old_tri->neigh[0]->neigh[k] = old_tri;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Insert time: " << i + 1 << std::endl;
|
||||
for (int e = 0; e < out_tris.size(); ++e)
|
||||
{
|
||||
std::cout << out_tris[e]->vert[0]->id << " " << out_tris[e]->vert[1]->id << " " << out_tris[e]->vert[2]->id << std::endl;
|
||||
}
|
||||
std::cout << "===================\n";
|
||||
}
|
||||
|
||||
// remove any triangles has an assistant vertex from out_tris
|
||||
for (t_iter = out_tris.begin(); t_iter != out_tris.end(); )
|
||||
// determine triangles that include the point and add the triangle to the cnst_tri and remove the triangle from exist_tri
|
||||
// this is the part that could take a lot of time if we are working with a large amount of points. We will fix this later
|
||||
cnst_tri.clear();
|
||||
for (t_iter = exist_tri.begin(); t_iter != exist_tri.end(); )
|
||||
{
|
||||
tmp_tri = *t_iter;
|
||||
if (tmp_tri->vert[0] == assit_vert[0] || tmp_tri->vert[0] == assit_vert[1] || tmp_tri->vert[0] == assit_vert[2] || tmp_tri->vert[0] == assit_vert[3])
|
||||
|
||||
dist = (tmp_tri->cx - in_verts[i].x) * (tmp_tri->cx - in_verts[i].x) +
|
||||
(tmp_tri->cy - in_verts[i].y) * (tmp_tri->cy - in_verts[i].y);
|
||||
|
||||
if ((dist - tmp_tri->cr) <= ZERO) // Points on the circumcircle are also included
|
||||
{
|
||||
for (int k = 0; k < 3; ++k)
|
||||
t_iter = exist_tri.erase(t_iter);
|
||||
cnst_tri.push_back(tmp_tri);
|
||||
}
|
||||
else t_iter++;
|
||||
}
|
||||
|
||||
// loop to remove duplicate edges
|
||||
cnst_edge.clear();
|
||||
for (int c = 0; c < cnst_tri.size(); ++c)
|
||||
{
|
||||
if (tmp_tri->neigh[1] != nullptr && tmp_tri->neigh[1]->neigh[k] == tmp_tri)
|
||||
for (int e = 0; e < 3; ++e)
|
||||
{
|
||||
tmp_tri->neigh[1]->neigh[k] = nullptr;
|
||||
break;
|
||||
tmp_edge.set(cnst_tri[c]->vert[e], cnst_tri[c]->vert[(e+1)%3]);
|
||||
|
||||
removed = false;
|
||||
for (e_iter = cnst_edge.begin(); e_iter != cnst_edge.end(); )
|
||||
{
|
||||
if (tmp_edge == *e_iter) // duplicate edge, remove from cnst_edge
|
||||
{
|
||||
e_iter = cnst_edge.erase(e_iter);
|
||||
removed = true;
|
||||
break; // no need to search more
|
||||
}
|
||||
else e_iter++;
|
||||
}
|
||||
|
||||
if (!removed) // not a duplicate edge, add to the cnst_edge
|
||||
{
|
||||
cnst_edge.push_back(tmp_edge);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// destroy the memories located and remove from the vector
|
||||
t_iter = out_tris.erase(t_iter);
|
||||
// construct new triangles and add to exist_tri
|
||||
for (int c = 0; c < cnst_edge.size(); ++c)
|
||||
{
|
||||
tmp_tri = new triangle(cnst_edge[c].vert[0], cnst_edge[c].vert[1], &in_verts[i]); // order the vertex anti-clock wise
|
||||
exist_tri.push_back(tmp_tri);
|
||||
}
|
||||
|
||||
// destroy memories used by cnst_edge
|
||||
for (int c = 0; c < cnst_tri.size(); ++c)
|
||||
{
|
||||
tmp_tri = cnst_tri[c];
|
||||
delete tmp_tri; tmp_tri = nullptr;
|
||||
}
|
||||
else if (tmp_tri->vert[1] == assit_vert[0] || tmp_tri->vert[1] == assit_vert[1] || tmp_tri->vert[1] == assit_vert[2] || tmp_tri->vert[1] == assit_vert[3])
|
||||
{
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (tmp_tri->neigh[2] != nullptr && tmp_tri->neigh[2]->neigh[k] == tmp_tri)
|
||||
{
|
||||
tmp_tri->neigh[2]->neigh[k] = nullptr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// remove any triangles has an assistant vertex from exist_tri
|
||||
for (t_iter = exist_tri.begin(); t_iter != exist_tri.end(); )
|
||||
{
|
||||
tmp_tri = *t_iter;
|
||||
if (tmp_tri->vert[0] == assit_vert[0] || tmp_tri->vert[0] == assit_vert[1] || tmp_tri->vert[0] == assit_vert[2] || tmp_tri->vert[0] == assit_vert[3] ||
|
||||
tmp_tri->vert[1] == assit_vert[0] || tmp_tri->vert[1] == assit_vert[1] || tmp_tri->vert[1] == assit_vert[2] || tmp_tri->vert[1] == assit_vert[3] ||
|
||||
tmp_tri->vert[2] == assit_vert[0] || tmp_tri->vert[2] == assit_vert[1] || tmp_tri->vert[2] == assit_vert[2] || tmp_tri->vert[2] == assit_vert[3])
|
||||
{
|
||||
// destroy the memories located and remove from the vector
|
||||
t_iter = out_tris.erase(t_iter);
|
||||
delete tmp_tri; tmp_tri = nullptr;
|
||||
}
|
||||
else if (tmp_tri->vert[2] == assit_vert[0] || tmp_tri->vert[2] == assit_vert[1] || tmp_tri->vert[2] == assit_vert[2] || tmp_tri->vert[2] == assit_vert[3])
|
||||
{
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (tmp_tri->neigh[0] != nullptr && tmp_tri->neigh[0]->neigh[k] == tmp_tri)
|
||||
{
|
||||
tmp_tri->neigh[0]->neigh[k] = nullptr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// destroy the memories located and remove from the vector
|
||||
t_iter = out_tris.erase(t_iter);
|
||||
t_iter = exist_tri.erase(t_iter);
|
||||
delete tmp_tri; tmp_tri = nullptr;
|
||||
}
|
||||
else t_iter++;
|
||||
}
|
||||
|
||||
// assign triangles index
|
||||
for (int i = 0; i < out_tris.size(); i++)
|
||||
// copy exist_tri to out_tris and destroy memories located
|
||||
out_tris.resize(exist_tri.size());
|
||||
for (int i = 0; i < exist_tri.size(); ++i)
|
||||
{
|
||||
out_tris[i]->id = i;
|
||||
out_tris[i].set(exist_tri[i]->vert[0], exist_tri[i]->vert[1], exist_tri[i]->vert[2]);
|
||||
delete exist_tri[i]; exist_tri[i] = nullptr;
|
||||
}
|
||||
|
||||
// destroy memories located for assit_vert
|
||||
@ -406,7 +254,7 @@ bool duplicated_vertex(const std::vector<vertex2dc> &in_verts)
|
||||
{
|
||||
for (int j = i+1; j < in_verts.size(); ++j)
|
||||
{
|
||||
if (in_verts[i] == in_verts[j])
|
||||
if (in_verts[i] == in_verts[j] && in_verts[i].id != in_verts[j].id)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
@ -423,9 +271,9 @@ bool duplicated_vertex(const std::vector<vertex2dc> &in_verts)
|
||||
*
|
||||
* @return If the triangulation is fully delaunay
|
||||
*/
|
||||
bool fully_delaunay(const std::vector<triangle*> &in_tris, const std::vector<vertex2dc> &in_verts)
|
||||
bool fully_delaunay(const std::vector<triangle> &in_tris, const std::vector<vertex2dc> &in_verts)
|
||||
{
|
||||
if (in_tris.empty()) return false;
|
||||
if (in_tris.empty()) return true;
|
||||
|
||||
int count;
|
||||
double dist;
|
||||
@ -434,10 +282,10 @@ bool fully_delaunay(const std::vector<triangle*> &in_tris, const std::vector<ver
|
||||
count = 0;
|
||||
for (int j = 0; j < in_verts.size(); ++j)
|
||||
{
|
||||
dist = (in_tris[i]->cx - in_verts[j].x) * (in_tris[i]->cx - in_verts[j].x) +
|
||||
(in_tris[i]->cy - in_verts[j].y) * (in_tris[i]->cy - in_verts[j].y);
|
||||
dist = (in_tris[i].cx - in_verts[j].x) * (in_tris[i].cx - in_verts[j].x) +
|
||||
(in_tris[i].cy - in_verts[j].y) * (in_tris[i].cy - in_verts[j].y);
|
||||
|
||||
if ((dist - in_tris[i]->cr) <= ZERO)
|
||||
if ((dist - in_tris[i].cr) <= ZERO)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
|
@ -1,312 +0,0 @@
|
||||
/**
|
||||
* @defgroup DELAUNAY
|
||||
*
|
||||
* @brief An implementation of the 2D Delaunay triangulation using the Bowyer-Watson algorithm.
|
||||
*
|
||||
* @author Yi Zhang
|
||||
* @date 2021-09-12
|
||||
*/
|
||||
|
||||
#ifndef _BW_2D_DELAUNAY_H
|
||||
#define _BW_2D_DELAUNAY_H
|
||||
#include "cmath"
|
||||
#include "vector"
|
||||
|
||||
#include "iostream"
|
||||
|
||||
#define ZERO 1e-5
|
||||
|
||||
// Start vertex definition
|
||||
struct vertex2dc
|
||||
{
|
||||
unsigned int id; // index of the vertex
|
||||
double x, y; // position of the vertex
|
||||
|
||||
vertex2dc() : x(NAN), y(NAN), id(0) {}
|
||||
vertex2dc(double inx, double iny, unsigned int inid = 0) {set(inx, iny, inid);}
|
||||
void set(double inx, double iny, unsigned int inid = 0)
|
||||
{
|
||||
x = inx; y = iny; id = inid;
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
bool operator ==(const vertex2dc &a, const vertex2dc &b) // overload the == operator for vertex2dc type
|
||||
{
|
||||
if(fabs(a.x - b.x) <= ZERO && fabs(a.y - b.y) <= ZERO)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// End vertex definition
|
||||
|
||||
// Start edge definition
|
||||
struct edge
|
||||
{
|
||||
vertex2dc *vert[2]; // vertex of the edge
|
||||
|
||||
edge() {vert[0] = vert[1] = nullptr;}
|
||||
edge(vertex2dc *v0ptr, vertex2dc *v1ptr) {set(v0ptr, v1ptr);}
|
||||
void set(vertex2dc *v0ptr, vertex2dc *v1ptr)
|
||||
{
|
||||
vert[0] = v0ptr; vert[1] = v1ptr;
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
bool operator ==(const edge &a, const edge &b) // overload the == operator for edge type
|
||||
{
|
||||
if((a.vert[0] == b.vert[0] && a.vert[1] == b.vert[1]) ||
|
||||
(a.vert[0] == b.vert[1] && a.vert[1] == b.vert[0]))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// End edge definition
|
||||
|
||||
// Start triangle definition
|
||||
struct triangle
|
||||
{
|
||||
vertex2dc *vert[3]; // vertex of the triangle
|
||||
double cx, cy; // center of the triangle's circumcircle
|
||||
double cr; // radius of the circumcircle
|
||||
|
||||
triangle() {vert[0] = vert[1] = vert[2] = nullptr;}
|
||||
triangle(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) {set(v0ptr, v1ptr, v2ptr);}
|
||||
void set(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr)
|
||||
{
|
||||
vert[0] = v0ptr; vert[1] = v1ptr; vert[2] = v2ptr;
|
||||
|
||||
double s = 0.5 / ((vert[1]->x - vert[0]->x) * (vert[2]->y - vert[0]->y) - (vert[1]->y - vert[0]->y) * (vert[2]->x - vert[0]->x));
|
||||
double m = vert[1]->x * vert[1]->x - vert[0]->x * vert[0]->x + vert[1]->y * vert[1]->y - vert[0]->y * vert[0]->y;
|
||||
double u = vert[2]->x * vert[2]->x - vert[0]->x * vert[0]->x + vert[2]->y * vert[2]->y - vert[0]->y * vert[0]->y;
|
||||
|
||||
cx = ((vert[2]->y - vert[0]->y) * m + (vert[0]->y - vert[1]->y) * u) * s;
|
||||
cy = ((vert[0]->x - vert[2]->x) * m + (vert[1]->x - vert[0]->x) * u) * s;
|
||||
cr = (vert[0]->x - cx) * (vert[0]->x - cx) + (vert[0]->y - cy) * (vert[0]->y - cy); // not need to sqrt() here
|
||||
return;
|
||||
}
|
||||
};
|
||||
// End triangle definition
|
||||
|
||||
/**
|
||||
* @brief 2D Delaunay triangulation of some given points using the Bowyer-Watson algorithm.
|
||||
*
|
||||
* @param in_verts Input vertexes. Defined by the user.
|
||||
* @param out_tris Output triangles. Compute by the function.
|
||||
*/
|
||||
void triangulation(std::vector<vertex2dc> &in_verts, std::vector<triangle> &out_tris)
|
||||
{
|
||||
if (!out_tris.empty()) out_tris.clear();
|
||||
if (in_verts.size() < 3) return;
|
||||
|
||||
// locate the surrounding box and initiate the staring two triangles
|
||||
double xmin = in_verts[0].x, xmax = in_verts[0].x;
|
||||
double ymin = in_verts[0].y, ymax = in_verts[0].y;
|
||||
for (int i = 0; i < in_verts.size(); ++i)
|
||||
{
|
||||
xmin = std::min(xmin, in_verts[i].x);
|
||||
xmax = std::max(xmax, in_verts[i].x);
|
||||
ymin = std::min(ymin, in_verts[i].y);
|
||||
ymax = std::max(ymax, in_verts[i].y);
|
||||
}
|
||||
|
||||
double midx = 0.5*(xmin + xmax);
|
||||
double midy = 0.5*(ymin + ymax);
|
||||
double maxi_s = std::max(xmax - xmin, ymax - ymin); // use an four times bigger rectangle to include all points
|
||||
|
||||
vertex2dc *tmp_vert = nullptr;
|
||||
std::vector<vertex2dc*> assit_vert;
|
||||
|
||||
tmp_vert = new vertex2dc(midx - maxi_s, midy - maxi_s, 99990); // lower left corner
|
||||
assit_vert.push_back(tmp_vert);
|
||||
|
||||
tmp_vert = new vertex2dc(midx + maxi_s, midy - maxi_s, 99991); // lower right corner
|
||||
assit_vert.push_back(tmp_vert);
|
||||
|
||||
tmp_vert = new vertex2dc(midx + maxi_s, midy + maxi_s, 99992); // upper right corner
|
||||
assit_vert.push_back(tmp_vert);
|
||||
|
||||
tmp_vert = new vertex2dc(midx - maxi_s, midy + maxi_s, 99993); // upper left corner
|
||||
assit_vert.push_back(tmp_vert);
|
||||
|
||||
triangle *tmp_tri = nullptr;
|
||||
std::vector<triangle*> exist_tri, cnst_tri;
|
||||
std::vector<triangle*>::iterator t_iter;
|
||||
|
||||
tmp_tri = new triangle(assit_vert[0], assit_vert[1], assit_vert[2]); // order the vertex anti-clock wise
|
||||
exist_tri.push_back(tmp_tri);
|
||||
|
||||
tmp_tri = new triangle(assit_vert[0], assit_vert[2], assit_vert[3]); // order the vertex anti-clock wise
|
||||
exist_tri.push_back(tmp_tri);
|
||||
|
||||
// loop all input vertice
|
||||
bool removed;
|
||||
double dist;
|
||||
edge tmp_edge;
|
||||
std::vector<edge> cnst_edge;
|
||||
std::vector<edge>::iterator e_iter;
|
||||
for (int i = 0; i < in_verts.size(); ++i)
|
||||
{
|
||||
// determine triangles that include the point and add the triangle to the cnst_tri and remove the triangle from exist_tri
|
||||
// this is the part that could take a lot of time if we are working with a large amount of points. We will fix this later
|
||||
cnst_tri.clear();
|
||||
for (t_iter = exist_tri.begin(); t_iter != exist_tri.end(); )
|
||||
{
|
||||
tmp_tri = *t_iter;
|
||||
|
||||
dist = (tmp_tri->cx - in_verts[i].x) * (tmp_tri->cx - in_verts[i].x) +
|
||||
(tmp_tri->cy - in_verts[i].y) * (tmp_tri->cy - in_verts[i].y);
|
||||
|
||||
if ((dist - tmp_tri->cr) <= ZERO) // Points on the circumcircle are also included
|
||||
{
|
||||
t_iter = exist_tri.erase(t_iter);
|
||||
cnst_tri.push_back(tmp_tri);
|
||||
}
|
||||
else t_iter++;
|
||||
}
|
||||
|
||||
// loop to remove duplicate edges
|
||||
cnst_edge.clear();
|
||||
for (int c = 0; c < cnst_tri.size(); ++c)
|
||||
{
|
||||
for (int e = 0; e < 3; ++e)
|
||||
{
|
||||
tmp_edge.set(cnst_tri[c]->vert[e], cnst_tri[c]->vert[(e+1)%3]);
|
||||
|
||||
removed = false;
|
||||
for (e_iter = cnst_edge.begin(); e_iter != cnst_edge.end(); )
|
||||
{
|
||||
if (tmp_edge == *e_iter) // duplicate edge, remove from cnst_edge
|
||||
{
|
||||
e_iter = cnst_edge.erase(e_iter);
|
||||
removed = true;
|
||||
break; // no need to search more
|
||||
}
|
||||
else e_iter++;
|
||||
}
|
||||
|
||||
if (!removed) // not a duplicate edge, add to the cnst_edge
|
||||
{
|
||||
cnst_edge.push_back(tmp_edge);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// construct new triangles and add to exist_tri
|
||||
for (int c = 0; c < cnst_edge.size(); ++c)
|
||||
{
|
||||
tmp_tri = new triangle(cnst_edge[c].vert[0], cnst_edge[c].vert[1], &in_verts[i]); // order the vertex anti-clock wise
|
||||
exist_tri.push_back(tmp_tri);
|
||||
}
|
||||
|
||||
// destroy memories used by cnst_edge
|
||||
for (int c = 0; c < cnst_tri.size(); ++c)
|
||||
{
|
||||
tmp_tri = cnst_tri[c];
|
||||
delete tmp_tri; tmp_tri = nullptr;
|
||||
}
|
||||
|
||||
std::cout << "Insert time: " << i + 1 << std::endl;
|
||||
for (int e = 0; e < exist_tri.size(); ++e)
|
||||
{
|
||||
std::cout << exist_tri[e]->vert[0]->id << " " << exist_tri[e]->vert[1]->id << " " << exist_tri[e]->vert[2]->id << std::endl;
|
||||
}
|
||||
std::cout << "===================\n";
|
||||
}
|
||||
|
||||
// remove any triangles has an assistant vertex from exist_tri
|
||||
for (t_iter = exist_tri.begin(); t_iter != exist_tri.end(); )
|
||||
{
|
||||
tmp_tri = *t_iter;
|
||||
if (tmp_tri->vert[0] == assit_vert[0] || tmp_tri->vert[0] == assit_vert[1] || tmp_tri->vert[0] == assit_vert[2] || tmp_tri->vert[0] == assit_vert[3] ||
|
||||
tmp_tri->vert[1] == assit_vert[0] || tmp_tri->vert[1] == assit_vert[1] || tmp_tri->vert[1] == assit_vert[2] || tmp_tri->vert[1] == assit_vert[3] ||
|
||||
tmp_tri->vert[2] == assit_vert[0] || tmp_tri->vert[2] == assit_vert[1] || tmp_tri->vert[2] == assit_vert[2] || tmp_tri->vert[2] == assit_vert[3])
|
||||
{
|
||||
// destroy the memories located and remove from the vector
|
||||
t_iter = exist_tri.erase(t_iter);
|
||||
delete tmp_tri; tmp_tri = nullptr;
|
||||
}
|
||||
else t_iter++;
|
||||
}
|
||||
|
||||
// copy exist_tri to out_tris and destroy memories located
|
||||
out_tris.resize(exist_tri.size());
|
||||
for (int i = 0; i < exist_tri.size(); ++i)
|
||||
{
|
||||
out_tris[i].set(exist_tri[i]->vert[0], exist_tri[i]->vert[1], exist_tri[i]->vert[2]);
|
||||
delete exist_tri[i]; exist_tri[i] = nullptr;
|
||||
}
|
||||
|
||||
// destroy memories located for assit_vert
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
delete assit_vert[i]; assit_vert[i] = nullptr;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Check for duplicated vertex
|
||||
*
|
||||
* @param[in] in_verts Input vertexes
|
||||
*
|
||||
* @return If there is duplicated vertex
|
||||
*/
|
||||
bool duplicated_vertex(const std::vector<vertex2dc> &in_verts)
|
||||
{
|
||||
if (in_verts.empty()) return false;
|
||||
|
||||
for (int i = 0; i < in_verts.size()-1; ++i)
|
||||
{
|
||||
for (int j = i+1; j < in_verts.size(); ++j)
|
||||
{
|
||||
if (in_verts[i] == in_verts[j])
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Check to see if the triangulation is fully delaunay
|
||||
*
|
||||
* @param[in] in_tris Input triangles
|
||||
* @param[in] in_verts Input vertexes
|
||||
*
|
||||
* @return If the triangulation is fully delaunay
|
||||
*/
|
||||
bool fully_delaunay(const std::vector<triangle> &in_tris, const std::vector<vertex2dc> &in_verts)
|
||||
{
|
||||
if (in_tris.empty()) return true;
|
||||
|
||||
int count;
|
||||
double dist;
|
||||
for (int i = 0; i < in_tris.size(); ++i)
|
||||
{
|
||||
count = 0;
|
||||
for (int j = 0; j < in_verts.size(); ++j)
|
||||
{
|
||||
dist = (in_tris[i].cx - in_verts[j].x) * (in_tris[i].cx - in_verts[j].x) +
|
||||
(in_tris[i].cy - in_verts[j].y) * (in_tris[i].cy - in_verts[j].y);
|
||||
|
||||
if ((dist - in_tris[i].cr) <= ZERO)
|
||||
{
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
if (count > 3)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // _BW_2D_DELAUNAY_H
|
45
demo.cpp
45
demo.cpp
@ -5,7 +5,7 @@
|
||||
|
||||
int main(int argc, char const *argv[])
|
||||
{
|
||||
std::vector<vertex2dc> points(7);
|
||||
std::vector<vertex2dc> points(21);
|
||||
points[0].set(-0.8, -0.8, 0);
|
||||
points[1].set(0.4, -1.2, 1);
|
||||
points[2].set(1.2, -0.9, 2);
|
||||
@ -13,7 +13,6 @@ int main(int argc, char const *argv[])
|
||||
points[4].set(2.5, 0.5, 4);
|
||||
points[5].set(4.1, 0.7, 5);
|
||||
points[6].set(5.7, 1.8, 6);
|
||||
/*
|
||||
points[7].set(5.1, 3.4, 7);
|
||||
points[8].set(2.5, 4.4, 8);
|
||||
points[9].set(1.2, 3.7, 9);
|
||||
@ -28,26 +27,14 @@ int main(int argc, char const *argv[])
|
||||
points[18].set(2.4, 2.8, 18);
|
||||
points[19].set(3.5, 1.8, 19);
|
||||
points[20].set(3.6, 3.1, 20);
|
||||
*/
|
||||
|
||||
/*
|
||||
std::vector<vertex2dc> points(7);
|
||||
points[0].set(-0.8, -0.8, 0);
|
||||
points[1].set(0.4, -1.2, 1);
|
||||
points[2].set(1.2, 0.9, 2);
|
||||
points[3].set(-0.4, 0.5, 3);
|
||||
points[4].set(0.2, -0.15, 4);
|
||||
points[5].set(0.5, 0.375, 5);
|
||||
points[6].set(0.7, -0.15, 6);
|
||||
*/
|
||||
|
||||
if (duplicated_vertex(points))
|
||||
{
|
||||
std::cerr << "Duplicated vertice detected.\n";
|
||||
std::cerr << "Duplicated vertexes detected.\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::vector<triangle*> elements;
|
||||
std::vector<triangle> elements;
|
||||
triangulation(points, elements);
|
||||
|
||||
if (fully_delaunay(elements, points))
|
||||
@ -72,36 +59,12 @@ int main(int argc, char const *argv[])
|
||||
outfile << i + 1 << " 2 0";
|
||||
for (int j = 0; j < 3; j++)
|
||||
{
|
||||
outfile << " " << elements[i]->vert[j]->id + 1;
|
||||
outfile << " " << elements[i].vert[j]->id + 1;
|
||||
}
|
||||
outfile << std::endl;
|
||||
}
|
||||
outfile << "$EndElements"<< std::endl;
|
||||
outfile.close();
|
||||
|
||||
// write a neighbor file
|
||||
outfile.open("demo.neigh");
|
||||
outfile << elements.size() << std::endl;
|
||||
for (int i = 0; i < elements.size(); i++)
|
||||
{
|
||||
outfile << i + 1;
|
||||
for (int j = 0; j < 3; j++)
|
||||
{
|
||||
if (elements[i]->neigh[j] != nullptr)
|
||||
{
|
||||
outfile << " " << elements[i]->neigh[j]->id + 1;
|
||||
}
|
||||
else outfile << " -1";
|
||||
}
|
||||
outfile << std::endl;
|
||||
}
|
||||
outfile.close();
|
||||
|
||||
// destroy allocated memories
|
||||
for (int i = 0; i < elements.size(); i++)
|
||||
{
|
||||
delete elements[i];
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
50
demo.msh
50
demo.msh
@ -2,7 +2,7 @@ $MeshFormat
|
||||
2.2 0 8
|
||||
$EndMeshFormat
|
||||
$Nodes
|
||||
7
|
||||
21
|
||||
1 -0.8 -0.8 0.0
|
||||
2 0.4 -1.2 0.0
|
||||
3 1.2 -0.9 0.0
|
||||
@ -10,11 +10,51 @@ $Nodes
|
||||
5 2.5 0.5 0.0
|
||||
6 4.1 0.7 0.0
|
||||
7 5.7 1.8 0.0
|
||||
8 5.1 3.4 0.0
|
||||
9 2.5 4.4 0.0
|
||||
10 1.2 3.7 0.0
|
||||
11 -1.2 3.9 0.0
|
||||
12 -3.2 5.1 0.0
|
||||
13 -4.3 2.9 0.0
|
||||
14 -3.1 0.7 0.0
|
||||
15 -1.3 0.6 0.0
|
||||
16 -2.1 2.9 0.0
|
||||
17 0.6 1.2 0.0
|
||||
18 0.1 2.4 0.0
|
||||
19 2.4 2.8 0.0
|
||||
20 3.5 1.8 0.0
|
||||
21 3.6 3.1 0.0
|
||||
$EndNodes
|
||||
$Elements
|
||||
4
|
||||
1 2 0 3 4 2
|
||||
30
|
||||
1 2 0 2 3 4
|
||||
2 2 0 4 3 5
|
||||
3 2 0 7 5 6
|
||||
4 2 0 5 3 6
|
||||
3 2 0 5 3 6
|
||||
4 2 0 10 9 11
|
||||
5 2 0 11 9 12
|
||||
6 2 0 14 1 15
|
||||
7 2 0 11 12 16
|
||||
8 2 0 12 13 16
|
||||
9 2 0 13 14 16
|
||||
10 2 0 14 15 16
|
||||
11 2 0 1 2 17
|
||||
12 2 0 2 4 17
|
||||
13 2 0 4 5 17
|
||||
14 2 0 15 1 17
|
||||
15 2 0 10 11 18
|
||||
16 2 0 11 16 18
|
||||
17 2 0 16 15 18
|
||||
18 2 0 15 17 18
|
||||
19 2 0 9 10 19
|
||||
20 2 0 17 5 19
|
||||
21 2 0 10 18 19
|
||||
22 2 0 18 17 19
|
||||
23 2 0 6 7 20
|
||||
24 2 0 7 8 20
|
||||
25 2 0 5 6 20
|
||||
26 2 0 19 5 20
|
||||
27 2 0 8 9 21
|
||||
28 2 0 9 19 21
|
||||
29 2 0 19 20 21
|
||||
30 2 0 20 8 21
|
||||
$EndElements
|
||||
|
@ -1,5 +0,0 @@
|
||||
4
|
||||
1 2 -1 -1
|
||||
2 1 4 -1
|
||||
3 -1 4 -1
|
||||
4 2 -1 3
|
@ -1,14 +0,0 @@
|
||||
OFF
|
||||
7 5 0
|
||||
-0.8 -0.8 0.0
|
||||
0.4 -1.2 0.0
|
||||
1.2 -0.9 0.0
|
||||
1.6 0.1 0.0
|
||||
2.5 0.5 0.0
|
||||
4.1 0.7 0.0
|
||||
5.7 1.8 0.0
|
||||
3 0 1 3
|
||||
3 1 2 3
|
||||
3 3 2 4
|
||||
3 4 2 5
|
||||
3 4 5 6
|
@ -1,76 +0,0 @@
|
||||
#include "delaunay_backup.h"
|
||||
#include "iostream"
|
||||
#include "fstream"
|
||||
#include "iomanip"
|
||||
|
||||
int main(int argc, char const *argv[])
|
||||
{
|
||||
std::vector<vertex2dc> points(7);
|
||||
|
||||
points[0].set(-0.8, -0.8, 0);
|
||||
points[1].set(0.4, -1.2, 1);
|
||||
points[2].set(1.2, -0.9, 2);
|
||||
points[3].set(1.6, 0.1, 3);
|
||||
points[4].set(2.5, 0.5, 4);
|
||||
points[5].set(4.1, 0.7, 5);
|
||||
points[6].set(5.7, 1.8, 6);
|
||||
/*
|
||||
points[7].set(5.1, 3.4, 7);
|
||||
points[8].set(2.5, 4.4, 8);
|
||||
points[9].set(1.2, 3.7, 9);
|
||||
points[10].set(-1.2, 3.9, 10);
|
||||
points[11].set(-3.2, 5.1, 11);
|
||||
points[12].set(-4.3, 2.9, 12);
|
||||
points[13].set(-3.1, 0.7, 13);
|
||||
points[14].set(-1.3, 0.6, 14);
|
||||
points[15].set(-2.1, 2.9, 15);
|
||||
points[16].set(0.6, 1.2, 16);
|
||||
points[17].set(0.1, 2.4, 17);
|
||||
points[18].set(2.4, 2.8, 18);
|
||||
points[19].set(3.5, 1.8, 19);
|
||||
points[20].set(3.6, 3.1, 20);
|
||||
*/
|
||||
|
||||
/*
|
||||
std::vector<vertex2dc> points(7);
|
||||
points[0].set(-0.8, -0.8, 0);
|
||||
points[1].set(0.4, -1.2, 1);
|
||||
points[2].set(1.2, 0.9, 2);
|
||||
points[3].set(-0.4, 0.5, 3);
|
||||
points[4].set(0.2, -0.15, 4);
|
||||
points[5].set(0.5, 0.375, 5);
|
||||
points[6].set(0.7, -0.15, 6);
|
||||
*/
|
||||
|
||||
if (duplicated_vertex(points))
|
||||
{
|
||||
std::cerr << "Duplicated vertice detected.\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::vector<triangle> elements;
|
||||
triangulation(points, elements);
|
||||
|
||||
if (fully_delaunay(elements, points))
|
||||
{
|
||||
std::clog << "The triangulation is fully delaunay.\n";
|
||||
}
|
||||
else std::clog << "The triangulation is not fully delaunay\n";
|
||||
|
||||
// Write a OFF file
|
||||
std::cout << "OFF\n";
|
||||
std::cout << points.size() << " " << elements.size() << " 0\n";
|
||||
for (int i = 0; i < points.size(); i++)
|
||||
{
|
||||
std::cout << std::setprecision(16) << points[i].x << " " << points[i].y << " 0.0" << std::endl;
|
||||
}
|
||||
|
||||
for (int i = 0; i < elements.size(); i++)
|
||||
{
|
||||
std::cout << "3 " << elements[i].vert[0]->id << " " << elements[i].vert[1]->id
|
||||
<< " " << elements[i].vert[2]->id << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
84
log.txt
84
log.txt
@ -1,84 +0,0 @@
|
||||
Insert time: 1
|
||||
0 99991 99992
|
||||
99990 99991 0
|
||||
99992 99993 0
|
||||
99993 99990 0
|
||||
===================
|
||||
Insert time: 2
|
||||
99990 99991 1
|
||||
1 99993 0
|
||||
99993 99990 0
|
||||
0 99990 1
|
||||
99991 99992 1
|
||||
99992 99993 1
|
||||
===================
|
||||
Insert time: 3
|
||||
99990 99991 1
|
||||
1 99993 0
|
||||
99993 99990 0
|
||||
0 99990 1
|
||||
2 99993 1
|
||||
99991 99992 2
|
||||
99992 99993 2
|
||||
1 99991 2
|
||||
===================
|
||||
Insert time: 4
|
||||
99990 99991 1
|
||||
1 99993 0
|
||||
99993 99990 0
|
||||
0 99990 1
|
||||
2 3 1
|
||||
99991 99992 3
|
||||
1 99991 2
|
||||
99992 99993 3
|
||||
99993 1 3
|
||||
2 99991 3
|
||||
===================
|
||||
Insert time: 5
|
||||
99990 99991 1
|
||||
1 99993 0
|
||||
99993 99990 0
|
||||
0 99990 1
|
||||
2 3 1
|
||||
1 99991 2
|
||||
4 99993 3
|
||||
99993 1 3
|
||||
2 99991 4
|
||||
99991 99992 4
|
||||
99992 99993 4
|
||||
3 2 4
|
||||
===================
|
||||
Insert time: 6
|
||||
99990 99991 1
|
||||
1 99993 0
|
||||
99993 99990 0
|
||||
0 99990 1
|
||||
2 3 1
|
||||
1 99991 2
|
||||
4 99993 3
|
||||
99993 1 3
|
||||
2 99991 5
|
||||
99992 99993 4
|
||||
3 2 4
|
||||
99991 99992 5
|
||||
99992 4 5
|
||||
4 2 5
|
||||
===================
|
||||
Insert time: 7
|
||||
99990 99991 1
|
||||
1 99993 0
|
||||
99993 99990 0
|
||||
0 99990 1
|
||||
2 3 1
|
||||
1 99991 2
|
||||
4 99993 3
|
||||
99993 1 3
|
||||
2 99991 5
|
||||
99992 99993 4
|
||||
3 2 4
|
||||
6 4 5
|
||||
4 2 5
|
||||
99991 99992 6
|
||||
99992 4 6
|
||||
5 99991 6
|
||||
===================
|
@ -1,98 +0,0 @@
|
||||
Insert time: 1
|
||||
99990 99991 0
|
||||
99991 99992 0
|
||||
99992 99993 0
|
||||
99993 99990 0
|
||||
===================
|
||||
Insert time: 2
|
||||
99993 99990 0
|
||||
99990 99991 1
|
||||
0 99990 1
|
||||
99991 99992 1
|
||||
99992 99993 1
|
||||
99993 0 1
|
||||
===================
|
||||
Insert time: 3
|
||||
99993 99990 0
|
||||
99990 99991 1
|
||||
0 99990 1
|
||||
99991 99992 2
|
||||
1 99991 2
|
||||
99992 99993 2
|
||||
99993 0 2
|
||||
0 1 2
|
||||
===================
|
||||
Insert time: 4
|
||||
99993 99990 0
|
||||
99990 99991 1
|
||||
0 99990 1
|
||||
1 99991 2
|
||||
99991 99992 3
|
||||
2 99991 3
|
||||
99992 99993 3
|
||||
99993 0 3
|
||||
0 1 3
|
||||
1 2 3
|
||||
===================
|
||||
Insert time: 5
|
||||
99993 99990 0
|
||||
99990 99991 1
|
||||
0 99990 1
|
||||
1 99991 2
|
||||
99993 0 3
|
||||
0 1 3
|
||||
1 2 3
|
||||
99991 99992 4
|
||||
2 99991 4
|
||||
3 2 4
|
||||
99992 99993 4
|
||||
99993 3 4
|
||||
===================
|
||||
Insert time: 6
|
||||
99993 99990 0
|
||||
99990 99991 1
|
||||
0 99990 1
|
||||
1 99991 2
|
||||
99993 0 3
|
||||
0 1 3
|
||||
1 2 3
|
||||
3 2 4
|
||||
99992 99993 4
|
||||
99993 3 4
|
||||
99991 99992 5
|
||||
99992 4 5
|
||||
2 99991 5
|
||||
4 2 5
|
||||
===================
|
||||
Insert time: 7
|
||||
99993 99990 0
|
||||
99990 99991 1
|
||||
0 99990 1
|
||||
1 99991 2
|
||||
99993 0 3
|
||||
0 1 3
|
||||
1 2 3
|
||||
3 2 4
|
||||
99993 3 4
|
||||
2 99991 5
|
||||
4 2 5
|
||||
99992 99993 6
|
||||
99993 4 6
|
||||
99991 99992 6
|
||||
5 99991 6
|
||||
4 5 6
|
||||
===================
|
||||
OFF
|
||||
7 5 0
|
||||
-0.8 -0.8 0.0
|
||||
0.4 -1.2 0.0
|
||||
1.2 -0.9 0.0
|
||||
1.6 0.1 0.0
|
||||
2.5 0.5 0.0
|
||||
4.1 0.7 0.0
|
||||
5.7 1.8 0.0
|
||||
3 0 1 3
|
||||
3 1 2 3
|
||||
3 3 2 4
|
||||
3 4 2 5
|
||||
3 4 5 6
|
Loading…
Reference in New Issue
Block a user