/** * @defgroup DELAUNAY * * @brief An implementation of the 2D Delaunay triangulation using the flip algorithm. * * @author Yi Zhang * @date 2021-09-19 */ #ifndef _FLIP_2D_DELAUNAY_H #define _FLIP_2D_DELAUNAY_H #include "cmath" #include "vector" #define ZERO 1e-5 // Start vertex definition struct vertex2dc { unsigned int id; // index of the vertex double x, y; // position of the vertex vertex2dc() : x(NAN), y(NAN), id(0) {} vertex2dc(double inx, double iny, unsigned int inid = 0) {set(inx, iny, inid);} void set(double inx, double iny, unsigned int inid = 0) { x = inx; y = iny; id = inid; return; } }; bool operator ==(const vertex2dc &a, const vertex2dc &b) // overload the == operator for vertex2dc type { if(fabs(a.x - b.x) <= ZERO && fabs(a.y - b.y) <= ZERO) { return true; } return false; } void circumcircle(vertex2dc *v0, vertex2dc *v1, vertex2dc *v2, double &cx, double &cy, double &cr) // calculate the circumcircle from three points { double s = 0.5 / ((v1->x - v0->x) * (v2->y - v0->y) - (v1->y - v0->y) * (v2->x - v0->x)); double m = v1->x*v1->x - v0->x*v0->x + v1->y*v1->y - v0->y*v0->y; double u = v2->x*v2->x - v0->x*v0->x + v2->y*v2->y - v0->y*v0->y; cx = ((v2->y - v0->y)*m + (v0->y - v1->y)*u)*s; cy = ((v0->x - v2->x)*m + (v1->x - v0->x)*u)*s; cr = (v0->x - cx)*(v0->x - cx) + (v0->y - cy)*(v0->y - cy); // not need to calculate the squared root here return; } // End vertex definition // Start triangle definition struct triangle { int id; // index of the triangle vertex2dc *vert[3]; // vertex of the triangle triangle *neigh[3]; // neighbors of the triangle double cx, cy; // center of the triangle's circumcircle double cr; // radius of the circumcircle triangle() {vert[0] = vert[1] = vert[2] = nullptr; neigh[0] = neigh[1] = neigh[2] = nullptr;} triangle(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) {set(v0ptr, v1ptr, v2ptr);} void set(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) { vert[0] = v0ptr; vert[1] = v1ptr; vert[2] = v2ptr; neigh[0] = neigh[1] = neigh[2] = nullptr; circumcircle(vert[0], vert[1], vert[2], cx, cy, cr); return; } void set_neighbor(triangle *n0ptr, triangle *n1ptr, triangle *n2ptr) { neigh[0] = n0ptr; neigh[1] = n1ptr; neigh[2] = n2ptr; return; } bool bound_location(double inx, double iny) // Test if the location is inside the triangle { double l1x, l1y, l2x, l2y; for (int i = 0; i < 3; i++) { l1x = vert[(i+1)%3]->x - vert[i]->x; l1y = vert[(i+1)%3]->y - vert[i]->y; l2x = inx - vert[i]->x; l2y = iny - vert[i]->y; if ((l1x*l2y - l1y*l2x) < 0) // This condition includes points on the triangle's edge { return false; } } return true; } }; /** * @brief Flip neighboring triangles and their neighbors * * original * * /\ * / \ * / \ * / t \ * t_id-------\ t_id (0, 1 or 2) * \--------/ * \ / * \ n / * \ / * \/ * n_id (0, 1 or 2) * * fliped * * /|\ * / | \ * / | \ * / | \ * t_id | \ t_id (0, 1 or 2) * \ t | n / * \ | / * \ | / * \ | / * \|/ * n_id (0, 1 or 2) * * @param t target triangle * @param n neighboring triangle * @param t_vid reference index of the target triangle * @param n_vid reference index of the neighboring triangle */ void flip_neighboring_triangles(triangle *t, triangle *n, int t_id, int n_id) { t->vert[(t_id+1)%3] = n->vert[n_id]; // flip t circumcircle(t->vert[0], t->vert[1], t->vert[2], t->cx, t->cy, t->cr); // update circumcircle n->vert[(n_id+2)%3] = t->vert[(t_id+2)%3]; // flip n circumcircle(n->vert[0], n->vert[1], n->vert[2], n->cx, n->cy, n->cr); // update circumcircle // set side neighbors t->neigh[t_id] = n->neigh[(n_id+2)%3]; n->neigh[(n_id+1)%3] = t->neigh[(t_id+1)%3]; // set opposite neighbors t->neigh[(t_id+1)%3] = n; n->neigh[(n_id+2)%3] = t; // set oppsite neighbors if (t->neigh[t_id] != nullptr) { for (int i = 0; i < 3; i++) { if (t->neigh[t_id]->neigh[i] == n) { t->neigh[t_id]->neigh[i] = t; break; } } } if (n->neigh[(n_id+1)%3] != nullptr) { for (int i = 0; i < 3; i++) { if (n->neigh[(n_id+1)%3]->neigh[i] == t) { n->neigh[(n_id+1)%3]->neigh[i] = n; break; } } } return; } /** * @brief Make sure that the input triangle meets the empty circumcircle condition * * @param t Input triangle */ void make_delaunay(triangle *t) { double dist; vertex2dc *n_vert; triangle *n_tri; for (int n = 0; n < 3; ++n) { if (t->neigh[n] != nullptr) // must has neighbor on this side { n_tri = t->neigh[n]; for (int v = 0; v < 3; ++v) { n_vert = n_tri->vert[v]; if (n_vert != t->vert[n] && n_vert != t->vert[(n+1)%3]) // find the opposite vertex { dist = (t->cx - n_vert->x) * (t->cx - n_vert->x) + (t->cy - n_vert->y) * (t->cy - n_vert->y); if ((dist - t->cr) < -1.0*ZERO) // need to be flipped { flip_neighboring_triangles(t, n_tri, n, v); // Make sure the triangles also meet the empty circumcircle condition after flipping make_delaunay(t); make_delaunay(n_tri); return; // Neighborhood changed. The current loop is not valid any more. } break; // no need to search more } } } } return; } // End triangle definition /** * @brief 2D Delaunay triangulation of some given points using the Bowyer-Watson algorithm. * * @param in_verts Input vertexes. Defined by the user. * @param out_tris Output triangles. Compute by the function. */ void triangulation(std::vector &in_verts, std::vector &out_tris) { if (!out_tris.empty()) out_tris.clear(); if (in_verts.size() < 3) return; // locate the surrounding box and initiate the staring two triangles double xmin = in_verts[0].x, xmax = in_verts[0].x; double ymin = in_verts[0].y, ymax = in_verts[0].y; for (int i = 0; i < in_verts.size(); ++i) { xmin = std::min(xmin, in_verts[i].x); xmax = std::max(xmax, in_verts[i].x); ymin = std::min(ymin, in_verts[i].y); ymax = std::max(ymax, in_verts[i].y); } double midx = 0.5*(xmin + xmax); double midy = 0.5*(ymin + ymax); double maxi_s = std::max(xmax - xmin, ymax - ymin); // use an four times bigger rectangle to include all points vertex2dc *tmp_vert = nullptr; std::vector box_vert; tmp_vert = new vertex2dc(midx - maxi_s, midy - maxi_s); // lower left corner box_vert.push_back(tmp_vert); tmp_vert = new vertex2dc(midx + maxi_s, midy - maxi_s); // lower right corner box_vert.push_back(tmp_vert); tmp_vert = new vertex2dc(midx + maxi_s, midy + maxi_s); // upper right corner box_vert.push_back(tmp_vert); tmp_vert = new vertex2dc(midx - maxi_s, midy + maxi_s); // upper left corner box_vert.push_back(tmp_vert); triangle *old_tri = nullptr, *tmp_tri = nullptr; triangle *cnst_tri[3]; std::vector::iterator t_iter; tmp_tri = new triangle(box_vert[0], box_vert[1], box_vert[2]); // order the vertex anti-clock wise out_tris.push_back(tmp_tri); tmp_tri = new triangle(box_vert[0], box_vert[2], box_vert[3]); // order the vertex anti-clock wise out_tris.push_back(tmp_tri); out_tris[0]->set_neighbor(nullptr, nullptr, out_tris[1]); out_tris[1]->set_neighbor(out_tris[0], nullptr, nullptr); // loop all input vertice for (int i = 0; i < in_verts.size(); ++i) { // determine the triangle that includes the new vertex and remove it from out_tris for (t_iter = out_tris.begin(); t_iter != out_tris.end(); ) { old_tri = *t_iter; if (old_tri->bound_location(in_verts[i].x, in_verts[i].y)) { t_iter = out_tris.erase(t_iter); break; } else t_iter++; } // build three new triangles for (int n = 0; n < 3; ++n) { tmp_tri = new triangle(old_tri->vert[n], old_tri->vert[(n+1)%3], &in_verts[i]); cnst_tri[n] = tmp_tri; out_tris.push_back(tmp_tri); } // sort neighbors for (int n = 0; n < 3; ++n) { if (old_tri->neigh[n] == nullptr) { cnst_tri[n]->set_neighbor(nullptr, cnst_tri[(n+1)%3], cnst_tri[(n+2)%3]); } else { cnst_tri[n]->set_neighbor(old_tri->neigh[n], cnst_tri[(n+1)%3], cnst_tri[(n+2)%3]); for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle { if (old_tri->neigh[n]->neigh[k] == old_tri) { old_tri->neigh[n]->neigh[k] = cnst_tri[n]; break; } } } } // delete the old triangle delete old_tri; old_tri = nullptr; // Make sure cnst_tri meet the empty circumcircle condition for (int n = 0; n < 3; ++n) { make_delaunay(cnst_tri[n]); } } // remove any triangles has an box vertex from out_tris for (t_iter = out_tris.begin(); t_iter != out_tris.end(); ) { tmp_tri = *t_iter; if (tmp_tri->vert[0] == box_vert[0] || tmp_tri->vert[0] == box_vert[1] || tmp_tri->vert[0] == box_vert[2] || tmp_tri->vert[0] == box_vert[3]) { if (tmp_tri->neigh[1] != nullptr) { for (int k = 0; k < 3; ++k) { if (tmp_tri->neigh[1]->neigh[k] == tmp_tri) { tmp_tri->neigh[1]->neigh[k] = nullptr; break; } } } // destroy the memories located and remove from the vector t_iter = out_tris.erase(t_iter); delete tmp_tri; tmp_tri = nullptr; } else if (tmp_tri->vert[1] == box_vert[0] || tmp_tri->vert[1] == box_vert[1] || tmp_tri->vert[1] == box_vert[2] || tmp_tri->vert[1] == box_vert[3]) { if (tmp_tri->neigh[2] != nullptr) { for (int k = 0; k < 3; ++k) { if (tmp_tri->neigh[2]->neigh[k] == tmp_tri) { tmp_tri->neigh[2]->neigh[k] = nullptr; break; } } } // destroy the memories located and remove from the vector t_iter = out_tris.erase(t_iter); delete tmp_tri; tmp_tri = nullptr; } else if (tmp_tri->vert[2] == box_vert[0] || tmp_tri->vert[2] == box_vert[1] || tmp_tri->vert[2] == box_vert[2] || tmp_tri->vert[2] == box_vert[3]) { if (tmp_tri->neigh[0] != nullptr) { for (int k = 0; k < 3; ++k) { if (tmp_tri->neigh[0]->neigh[k] == tmp_tri) { tmp_tri->neigh[0]->neigh[k] = nullptr; break; } } } // destroy the memories located and remove from the vector t_iter = out_tris.erase(t_iter); delete tmp_tri; tmp_tri = nullptr; } else t_iter++; } // assign triangles index for (int i = 0; i < out_tris.size(); i++) { out_tris[i]->id = i; } // destroy memories located for box_vert for (int i = 0; i < 4; ++i) { delete box_vert[i]; box_vert[i] = nullptr; } return; } /** * @brief Check for duplicated vertex * * @param[in] in_verts Input vertexes * * @return If there is duplicated vertex */ bool duplicated_vertex(const std::vector &in_verts) { if (in_verts.empty()) return false; for (int i = 0; i < in_verts.size()-1; ++i) { for (int j = i+1; j < in_verts.size(); ++j) { if (in_verts[i] == in_verts[j] && in_verts[i].id != in_verts[j].id) { return true; } } } return false; } /** * @brief Check to see if the triangulation is fully delaunay * * @param[in] in_tris Input triangles * @param[in] in_verts Input vertexes * * @return If the triangulation is fully delaunay */ bool fully_delaunay(const std::vector &in_tris, const std::vector &in_verts) { if (in_tris.empty()) return false; int count; double dist; for (int i = 0; i < in_tris.size(); ++i) { count = 0; for (int j = 0; j < in_verts.size(); ++j) { dist = (in_tris[i]->cx - in_verts[j].x) * (in_tris[i]->cx - in_verts[j].x) + (in_tris[i]->cy - in_verts[j].y) * (in_tris[i]->cy - in_verts[j].y); if ((dist - in_tris[i]->cr) <= ZERO) { count++; } } if (count > 3) { return false; } } return true; } #endif // _FLIP_2D_DELAUNAY_H