/** * @defgroup DELAUNAY * * @brief An implementation of the 2D Delaunay triangulation using the Bowyer-Watson algorithm. * * @author Yi Zhang * @date 2021-09-12 */ #ifndef _BW_2D_DELAUNAY_H #define _BW_2D_DELAUNAY_H #include "cmath" #include "vector" #include "iostream" #include "fstream" #include "iomanip" #define ZERO 1e-5 // Start vertex definition struct vertex2dc { unsigned int id; // index of the vertex double x, y; // position of the vertex vertex2dc() : x(NAN), y(NAN), id(0) {} vertex2dc(double inx, double iny, unsigned int inid = 0) {set(inx, iny, inid);} void set(double inx, double iny, unsigned int inid = 0) { x = inx; y = iny; id = inid; return; } }; bool operator ==(const vertex2dc &a, const vertex2dc &b) // overload the == operator for vertex2dc type { if(fabs(a.x - b.x) <= ZERO && fabs(a.y - b.y) <= ZERO) { return true; } return false; } // End vertex definition // Start edge definition struct edge { vertex2dc *vert[2]; // vertex of the edge edge() {vert[0] = vert[1] = nullptr;} edge(vertex2dc *v0ptr, vertex2dc *v1ptr) {set(v0ptr, v1ptr);} void set(vertex2dc *v0ptr, vertex2dc *v1ptr) { vert[0] = v0ptr; vert[1] = v1ptr; return; } }; bool operator ==(const edge &a, const edge &b) // overload the == operator for edge type { if((a.vert[0] == b.vert[0] && a.vert[1] == b.vert[1]) || (a.vert[0] == b.vert[1] && a.vert[1] == b.vert[0])) { return true; } return false; } // End edge definition // Start triangle definition struct triangle { vertex2dc *vert[3]; // vertex of the triangle double cx, cy; // center of the triangle's circumcircle double cr; // radius of the circumcircle triangle() {vert[0] = vert[1] = vert[2] = nullptr;} triangle(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) {set(v0ptr, v1ptr, v2ptr);} void set(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) { vert[0] = v0ptr; vert[1] = v1ptr; vert[2] = v2ptr; double s = 0.5 / ((vert[1]->x - vert[0]->x) * (vert[2]->y - vert[0]->y) - (vert[1]->y - vert[0]->y) * (vert[2]->x - vert[0]->x)); double m = vert[1]->x * vert[1]->x - vert[0]->x * vert[0]->x + vert[1]->y * vert[1]->y - vert[0]->y * vert[0]->y; double u = vert[2]->x * vert[2]->x - vert[0]->x * vert[0]->x + vert[2]->y * vert[2]->y - vert[0]->y * vert[0]->y; cx = ((vert[2]->y - vert[0]->y) * m + (vert[0]->y - vert[1]->y) * u) * s; cy = ((vert[0]->x - vert[2]->x) * m + (vert[1]->x - vert[0]->x) * u) * s; cr = (vert[0]->x - cx) * (vert[0]->x - cx) + (vert[0]->y - cy) * (vert[0]->y - cy); // not need to sqrt() here return; } }; // End triangle definition /** * @brief 2D Delaunay triangulation of some given points using the Bowyer-Watson algorithm. * * @param in_verts Input vertexes. Defined by the user. * @param out_tris Output triangles. Compute by the function. */ void triangulation(std::vector &in_verts, std::vector &out_tris, int valid_size) { if (!out_tris.empty()) out_tris.clear(); if (in_verts.size() < 3) return; // locate the surrounding box and initiate the staring two triangles double xmin = in_verts[0].x, xmax = in_verts[0].x; double ymin = in_verts[0].y, ymax = in_verts[0].y; for (int i = 0; i < in_verts.size(); ++i) { xmin = std::min(xmin, in_verts[i].x); xmax = std::max(xmax, in_verts[i].x); ymin = std::min(ymin, in_verts[i].y); ymax = std::max(ymax, in_verts[i].y); } double midx = 0.5*(xmin + xmax); double midy = 0.5*(ymin + ymax); double maxi_s = std::max(xmax - xmin, ymax - ymin); // use an four times bigger rectangle to include all points vertex2dc *tmp_vert = nullptr; std::vector assit_vert; tmp_vert = new vertex2dc(midx - maxi_s, midy - maxi_s, 0); // lower left corner assit_vert.push_back(tmp_vert); tmp_vert = new vertex2dc(midx + maxi_s, midy - maxi_s, 1); // lower right corner assit_vert.push_back(tmp_vert); tmp_vert = new vertex2dc(midx + maxi_s, midy + maxi_s, 2); // upper right corner assit_vert.push_back(tmp_vert); tmp_vert = new vertex2dc(midx - maxi_s, midy + maxi_s, 3); // upper left corner assit_vert.push_back(tmp_vert); triangle *tmp_tri = nullptr; std::vector exist_tri, cnst_tri; std::vector::iterator t_iter; tmp_tri = new triangle(assit_vert[0], assit_vert[1], assit_vert[2]); // order the vertex anti-clock wise exist_tri.push_back(tmp_tri); tmp_tri = new triangle(assit_vert[0], assit_vert[2], assit_vert[3]); // order the vertex anti-clock wise exist_tri.push_back(tmp_tri); // loop all input vertice bool removed; double dist; edge tmp_edge; std::vector cnst_edge; std::vector::iterator e_iter; //for (int i = 0; i < in_verts.size(); ++i) for (int i = 0; i < valid_size; ++i) { // determine triangles that include the point and add the triangle to the cnst_tri and remove the triangle from exist_tri // this is the part that could take a lot of time if we are working with a large amount of points. We will fix this later cnst_tri.clear(); for (t_iter = exist_tri.begin(); t_iter != exist_tri.end(); ) { tmp_tri = *t_iter; dist = (tmp_tri->cx - in_verts[i].x) * (tmp_tri->cx - in_verts[i].x) + (tmp_tri->cy - in_verts[i].y) * (tmp_tri->cy - in_verts[i].y); if ((dist - tmp_tri->cr) <= ZERO) // Points on the circumcircle are also included { t_iter = exist_tri.erase(t_iter); cnst_tri.push_back(tmp_tri); } else t_iter++; } // loop to remove duplicate edges cnst_edge.clear(); for (int c = 0; c < cnst_tri.size(); ++c) { for (int e = 0; e < 3; ++e) { tmp_edge.set(cnst_tri[c]->vert[e], cnst_tri[c]->vert[(e+1)%3]); removed = false; for (e_iter = cnst_edge.begin(); e_iter != cnst_edge.end(); ) { if (tmp_edge == *e_iter) // duplicate edge, remove from cnst_edge { e_iter = cnst_edge.erase(e_iter); removed = true; break; // no need to search more } else e_iter++; } if (!removed) // not a duplicate edge, add to the cnst_edge { cnst_edge.push_back(tmp_edge); } } } // construct new triangles and add to exist_tri for (int c = 0; c < cnst_edge.size(); ++c) { tmp_tri = new triangle(cnst_edge[c].vert[0], cnst_edge[c].vert[1], &in_verts[i]); // order the vertex anti-clock wise exist_tri.push_back(tmp_tri); } // destroy memories used by cnst_edge for (int c = 0; c < cnst_tri.size(); ++c) { tmp_tri = cnst_tri[c]; delete tmp_tri; tmp_tri = nullptr; } } // Start testing code std::ofstream outfile("test_backup.msh"); outfile << "$MeshFormat" << std::endl << "2.2 0 8" << std::endl << "$EndMeshFormat "<x << " " << assit_vert[i]->y << " 0.0" << std::endl; } for (int i = 0; i < valid_size; i++) { outfile << i + 5 << " " << std::setprecision(16) << in_verts[i].x << " " << in_verts[i].y << " 0.0" << std::endl; } outfile<<"$EndNodes"<vert[j]->id + 1; } outfile << std::endl; } outfile << "$EndElements"<< std::endl; outfile.close(); // End testing code // remove any triangles has an assistant vertex from exist_tri for (t_iter = exist_tri.begin(); t_iter != exist_tri.end(); ) { tmp_tri = *t_iter; if (tmp_tri->vert[0] == assit_vert[0] || tmp_tri->vert[0] == assit_vert[1] || tmp_tri->vert[0] == assit_vert[2] || tmp_tri->vert[0] == assit_vert[3] || tmp_tri->vert[1] == assit_vert[0] || tmp_tri->vert[1] == assit_vert[1] || tmp_tri->vert[1] == assit_vert[2] || tmp_tri->vert[1] == assit_vert[3] || tmp_tri->vert[2] == assit_vert[0] || tmp_tri->vert[2] == assit_vert[1] || tmp_tri->vert[2] == assit_vert[2] || tmp_tri->vert[2] == assit_vert[3]) { // destroy the memories located and remove from the vector t_iter = exist_tri.erase(t_iter); delete tmp_tri; tmp_tri = nullptr; } else t_iter++; } // copy exist_tri to out_tris and destroy memories located out_tris.resize(exist_tri.size()); for (int i = 0; i < exist_tri.size(); ++i) { out_tris[i].set(exist_tri[i]->vert[0], exist_tri[i]->vert[1], exist_tri[i]->vert[2]); delete exist_tri[i]; exist_tri[i] = nullptr; } // destroy memories located for assit_vert for (int i = 0; i < 4; ++i) { delete assit_vert[i]; assit_vert[i] = nullptr; } return; } /** * @brief Check for duplicated vertex * * @param[in] in_verts Input vertexes * * @return If there is duplicated vertex */ bool duplicated_vertex(const std::vector &in_verts) { if (in_verts.empty()) return false; for (int i = 0; i < in_verts.size()-1; ++i) { for (int j = i+1; j < in_verts.size(); ++j) { if (in_verts[i] == in_verts[j] && in_verts[i].id != in_verts[j].id) { return true; } } } return false; } /** * @brief Check to see if the triangulation is fully delaunay * * @param[in] in_tris Input triangles * @param[in] in_verts Input vertexes * * @return If the triangulation is fully delaunay */ bool fully_delaunay(const std::vector &in_tris, const std::vector &in_verts) { if (in_tris.empty()) return true; int count; double dist; for (int i = 0; i < in_tris.size(); ++i) { count = 0; for (int j = 0; j < in_verts.size(); ++j) { dist = (in_tris[i].cx - in_verts[j].x) * (in_tris[i].cx - in_verts[j].x) + (in_tris[i].cy - in_verts[j].y) * (in_tris[i].cy - in_verts[j].y); if ((dist - in_tris[i].cr) <= ZERO) { count++; } } if (count > 3) { return false; } } return true; } #endif // _BW_2D_DELAUNAY_H