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Introduction

This readme file contains a description of the MATLAB code

emmsynth_fast.m

for fast and accurate evaluation of all components of the geomagnetic field rep-
resented in high degree (> 720) solid spherical or ellipsoidal harmonics at many
scattered points in the space above the surface of the Earth.

The evaluated magnetic field components are listed in Subsection 2.2.
Their values are derived from the official NOAA Enhanced Magnetic Models
EMM2015 or EMM2017. In what follows we utilize the terminology and no-
tation from the description of the World Magnetic Model WMM2015, given in
WMM2015_Report.pdf at https://www.ngdc.noaa.gov/geomag/WMM/.

The package emmsynth_fast_m.zip contains all files necessary for the
execution of the code. Before using the main code emmsynth_fast.m one has
to initialize it by running emmsynth_init.m. The code emmsynth_init.m

uses the EMM2015 or EMM2017 coefficients given in EMM2015.COF and
EMM2015SV.COF or EMM2017.COF and EMM2017SV.COF and produces six bi-
nary data files emm2015_*.bin or emm2017_*.bin (of 1.5 GB each, not
included in the package) with the weighted values of the magnetic gradi-
ent and their secular variations at regular points located on a number of
confocal ellipsoids. These data files are input files for emmsynth_fast.m

together with the applied magnetic model, the decimal year for model
evaluation and the user defined file scattered_points.dat. The package
contains two test files scattered_points.dat with 1,000 and 1,000,000
point coordinates, respectively. The expected test results of the 1,000 point
file are collected in scattered_points_values1000_EMM2015_2018.zip

for magnetic model EMM2015 and year 2018 or
scattered_points_values1000_EMM2017_2019.zip for magnetic model
EMM2017 and year 2019.

The purpose of the third code emmsynth_standard.m is to monitor the
accuracy of the performance and to serve as a benchmark for the speed of
the code emmsynth_fast.m. The code emmsynth_standard.m uses the file
scattered_points_values.dat as an input file and evaluates the magnetic field
components applying the standard methods for spherical harmonic computation
based of the model coefficients included in EMM2015.COF and EMM2015SV.COF or
EMM2017.COF and EMM2017SV.COF.

The current file describes (§4) the key components of the algorithm.
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1 Files in the package

The package emmsynth_fast_m.zip contains the following files:

• emmsynth_fast.m containing the MATLAB code of the main program;

• emmsynth_standard.m containing the MATLAB code of the testing pro-
gram;

• emmsynth_init.m containing the MATLAB code for initialization
of emmsynth_fast.m with the binary data files emm2015_*.bin or
emm2017_*.bin.

• EMM2015.COF and EMM2015SV.COF are the free format ASCII files contain-
ing all EMM2015 coefficients. EMM2017.COF and EMM2017SV.COF are the
free format ASCII files containing the coefficients from the predictive part
of EMM2017. The coefficient files have been downloaded from

https://www.ngdc.noaa.gov/geomag/EMM/

These two couples of files are used by emmsynth_init.m and
emmsynth_standard.m.

• Archives scattered_points1000.zip, scattered_points1000000.zip

containing the file scattered_points.dat with 1,000 and 1,000,000 point
coordinates, respectively, as test input files;

• Each of the archives scattered_points_values1000_EMM2015_2018.zip
and scattered_points_values1000_EMM2017_2019.zip contains the
two 1,000 point test output files scattered_points_values.dat and
scattered_points_values_standard.dat computed for the respective
model (EMM2015 or EMM2017) and year (2018 or 2019) for all magnetic
field components;

• readme_emmsynth_fast.pdf is the current file.
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2 Input and output files

2.1 Free format ASCII input file

The ASCII input file scattered_points.dat created by the user contains the
geodetic geographic coordinates of the scattered points in space, where the mag-
netic field is to be evaluated. The file has one record for every point. Each record
contains the coordinates of one point: the geodetic geographic latitude and the
longitude in decimal degrees followed by the height above the reference ellipsoid
in meters.

(decimal degrees) (decimal degrees) (meters)

geodetic latitude longitude geodetic distance

These data are read using free FORMAT. Geodetic coordinates should refer to
the WGS84. The scattered points have to be located in the range from −415
up to 1, 000, 000 meters above the Earth’s reference ellipsoid.

2.2 Free format ASCII output files

The ASCII output file scattered_points_values.dat contains the magnetic
field components’ values at the scattered points from the input. The file has
one record with 13 entries for every point. The first 3 entries are the point
coordinate:

1. Geodetic geographic latitude (in decimal degrees)

2. Geodetic geographic longitude (in decimal degrees)

3. The height above the reference ellipsoid (in meters)

as read from scattered_points.dat.
The last 10 entries are the values at the above point of the following compo-

nents of the magnetic field computed by emmsynth_fast.m (numbered according
to their position in the record):

4. North component in geocentric coordinates X ′ (in nT ’nanoTesla’)

5. East component in geocentric coordinates Y ′ (in nT )

6. Down component in geocentric coordinates Z ′ (in nT )

7. North component in geodetic coordinates X (in nT )

8. East component in geodetic coordinates Y (in nT )

9. Down component in geodetic coordinates Z (in nT )

10. Horizontal intensity H (in nT )

11. Total intensity F (in nT )

12. Inclination I (in decimal degrees)
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13. Declination D (in decimal degrees)

The file scattered_points_values.dat also serves as input for
emmsynth_standard.m.

The ASCII output file scattered_points_values_standard.dat has the
same structure as scattered_points_values.dat, where the last 10 entries
of every record are the values computed by emmsynth_standard.m (instead of
emmsynth_fast.m).

2.3 The EMM2015 coefficients input files

EMM2015.COF and EMM2015SV.COF are the files containing the standard
EMM2015 coefficients. EMM2017.COF and EMM2017SV.COF are the files contain-
ing the coefficients from the predictive part of EMM2017. They have been
downloaded from

https://www.ngdc.noaa.gov/geomag/EMM/.
These files are required as input by emmsynth_init.m and
emmsynth_standard.m.

2.4 Binary data files

The six data files emm2015_*.bin or emm2017_*.bin are not included in
the package. They are produced by emmsynth_init.m in order to initialize
emmsynth_fast.m. Every file contains several records – one record for every
confocal ellipsoid used by the code (see §4.5). Every unformatted record con-
tains double precision numbers with little-endian byte ordering. These numbers
are the weighted values of the respective magnetic field components at regular
points on the corresponding ellipsoid.

The binary data files for EMM2015 and their sizes are

• emm2015_Xp.bin (1.5 GB);

• emm2015_Yp.bin (1.5 GB);

• emm2015_Zp.bin (1.5 GB);

• emm2015_XpSV.bin (1.5 GB);

• emm2015_YpSV.bin (1.5 GB);

• emm2015_ZpSV.bin (1.5 GB).

The sizes of the 6 data files for EMM2017 are the same, while their names are
appropriately modified. Besides the applicable magnetic model the file names
also contain indication of the magnetic field components X ′, Y ′, Z ′ and the
respective secular variation quantities.
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3 How to run the codes

1. Run emmsynth_init.m with the choice of the model (enter 1 for EMM2015
or 2 for EMM2017) to generate the six data files emm2015_*.bin or
emm2017_*.bin, respectively.

2. Create a free format ASCII input file scattered_points.dat with the
coordinates of the scattered points.

3. Run emmsynth_fast.m on scattered_points.dat with the choice of the
model (enter 1 for EMM2015 or 2 for EMM2017) and with the decimal year
in the range from 2015 to 2020 for EMM2015 or in the range from 2017
to 2022 for EMM2017 as input parameters in order to obtain the ASCII
output file scattered_points_values.dat. One may repeat many times
the previous and the current steps for different scattered point files, models
and years without performing Step 1.

4. If you want to check the accuracy of emmsynth_fast.m, then
run emmsynth_standard.m as on the emmsynth_fast.m output
scattered_points_values.dat with the same choices of model
and year.

Remarks:

• All data files are located in the same files folder as the codes.

• Every data file emm2015_*.bin is 1.5 GB and all 6 files are simultaneously
loaded by emmsynth_fast.m when EMM2015 is chosen. The same for
EMM2017.

• emmsynth_init.m works 11 minutes on my computer for a chosen model.

• When emmsynth_standard.m is run after emmsynth_fast.m one should
use the input file scattered_points.dat with no more than 60,000 points
due to the slow speed of the “standard” code. (On the standard laptop we
use (see §8) emmsynth_standard.m works more than 10 minutes to handle
60,000 points.)
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4 Key components of the algorithm

4.1 Magnetic field component evaluation: Overview

Following WMM2015_Report.pdf we sketch the procedure for computing the
magnetic field elements at a given location and time (λ, ϕ, h, t), where λ and
ϕ are the geodetic longitude and latitude, h is the height above the WGS84
ellipsoid, and t is the time given in decimal years.

1. The user provided geodetic coordinates (λ, ϕ, h) are transformed into
spherical geocentric coordinates (λ, ϕ′, r).

2. The Gauss coefficients gmn (t), hmn (t) are determined for the desired time
t from the model coefficients gmn (t0), hmn (t0) (read from EMM2015.COF

or EMM2017.COF) and ġmn (t0) and ḣmn (t0) (read from EMM2015SV.COF or
EMM2017SV.COF) by

gmn (t) = gmn (t0) + (t− t0)ġmn (t0), hmn (t) = hmn (t0) + (t− t0)ḣmn (t0),

where the time t is given in decimal years and t0 = 2015.0 (or t0 = 2017.0)
is the reference epoch of the model.

3. The field vector components X ′ = −1

r

∂V

∂ϕ′
, Y ′ = − 1

r cosϕ′
∂V

∂λ
, Z ′ =

∂V

∂r
are computed from the scalar potential V . This potential can be expanded
in terms of spherical harmonics as

V (λ, ϕ′, r, t) = a

N∑
n=1

(a
r

)n+1 n∑
m=0

(gmn (t) cosmλ+hmn (t) sinmλ)P̆mn (sinϕ′),

where N is the degree of the expansion of the model (N = 740 for
EMM2015, N = 790 for EMM2017), a is the geomagnetic reference ra-
dius (a = 6, 371, 200 m), gmn (t) and hmn (t) are the time-dependent Gauss
coefficients of degree n and order m from Step 2, P̆mn are the Schmidt
semi-normalized associated Legendre functions.

4. The geocentric magnetic field vector components X ′, Y ′, Z ′ are rotated
into the ellipsoidal reference frame to the magnetic field vector components
X,Y = Y ′, Z.

5. The magnetic elements H,F, I,D are computed from the orthogonal com-
ponents X,Y, Z:

H =
√
X2 + Y 2, F =

√
X2 + Y 2 + Z2,

D = arctanY/X, I = arctanZ/H.

7



The third step in the above algorithm is the most important and time con-
suming one. For this step we utilize the algorithm for fast evaluation of quan-
tities represented in high degree solid spherical harmonics from [2], where this
algorithms is applied to evaluation of gravimetric quantities in the gravitational
model EGM2008. The computations in the remaining four steps are straight-
forward and essential improvement in time is not possible.

4.2 Comparison between the representations of gravimet-
ric and magnetic potentials

Using the same geocentric coordinates with θ′ = π/2 − ϕ′ denoting the co-
latitude we represent the disturbing gravitational potential by

T (λ, θ′, r) =
GM

a

N∑
n=2

(a
r

)n+1 n∑
m=0

(cnm cosmλ+ snm sinmλ)P̄nm(cos θ′)

whereGM is the Earth’s gravitational constant, N is the degree of the expansion
of the model (N = 2190 for EGM2008), a is a scaling factor associated with
the coefficients that is usually chosen to be numerically equal to the semi-major
axis of the adopted reference ellipsoid (a = ae = 6, 378, 137 m in WGS84), cnm
and snm are the fully-normalized spherical harmonic coefficients of degree n and
order m describing the Earth’s gravitational field, P̄nm are the fully-normalized
associated Legendre functions (ALF).

In comparing the above representations of the disturbing gravimetric po-
tential T and the magnetic potential V we would like to make the following
observations:

1. Use of latitude and co-latitude. This creates small problems as the argu-
ment of the ALF’s is the same (sinϕ′ = cos θ′). Differences occur in:

• the North component of the vector field, as:
∂

∂ϕ′
= − ∂

∂θ′
,

• vector field rotation from sphere to ellipse in step 4: ϕ′−ϕ = −(θ′−θ).

2. The ALF normalization. P̆mn are the Schmidt semi-normalized ALF, while
P̄nm are the fully-normalized ALF. Note that ALF have the same defini-
tion in both models, see e.g. Heiskanen and Moritz, 1967. The relation
is: √

2n+ 1P̆mn (v) = P̄nm(v), 0 ≤ m ≤ n, n = 0, 1, . . . .

3. The scaling factor associated with the coefficients. In the magnetic model
a = 6, 371, 200 m, while a = ae = 6, 378, 137 m in WGS84. The difference
is 6, 937 m.

4. Type of the local coordinate system. The elements of the main magnetic
field are computed with respect to a local geodetic system – the “north”
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direction is tangential to the Earth related ellipsoid passing through the
point and the “down” direction is normal to the ellipsoid (the correspond-
ing values of the field are the Northerly intensity X and the Vertical
intensity Z). Some quantities of the gravitational field are computed with
respect to local spherical system – the “north” direction is tangential to
the sphere passing through the point and the “down” direction is normal
to the sphere (the corresponding values of the field are the north-south

deflection of the vertical
1

rγ

∂T

∂θ′
, and −∂T

∂r
as gravity disturbance).

5. Directions of the local coordinate system. ~Oz points down in the magnetic
case and ~Oz points up in the gravitational case.

6. n ≥ 1 or n ≥ 2. This difference is not important from computational
view point. Here V represent the whole magnetic potential, while T is the
disturbing gravity potential.

In the gravity case the potential is represented by a normal part and a
disturbing part T . Only the disturbing potential is modeled and computed
in spherical harmonics. The contribution of the gravity disturbance to the
entire gravity is approximately 0.1%!

In the magnetic case we do not have a decomposition into a normal part
and a disturbing part. Even if one considers all harmonics of degree ≤ 15
as the normal part of EMM2015, then the contribution of the remaining
terms (the tail of the series) to the magnetic field components at the
reference ellipsoid will amount to 8% for X, 21% for Y and 10% for Z and
F . For EMM2017 the corresponding contributions amount to 12% for X,
29% for Y and 14% for Z and F .

7. gmn (t) and hmn (t) are in nT (nano-Tesla), while cnm and snm are unit-less.

Finally we observe that from computational point of view:

• The north component in geocentric coordinates X ′ corresponds to the
north-south deflection of the vertical ξ (in the gravitational model);

• The east component in geocentric coordinates Y ′ corresponds to the east-
west deflection of the vertical η;

• The down component in geocentric coordinates Z ′ corresponds to the grav-
ity disturbance δg.

4.3 Representation of the magnetic field components

In this part we show that Z ′ has a representation of the form

κ(r)F(λ, θ′, r),
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while X ′ and Y ′ have representations of the form

κ(r)(F1(λ, θ′, r) cosλ+ F2(λ, θ′, r) sinλ),

where F ,F1,F2 are harmonic functions and κ’s are simple smooth functions.
In the representations in this subsection we do not indicate the dependance

on t, which comes with the coefficients cnm, snm (given below).

4.3.1 From Schmidt semi-normalized to fully-normalized ALF

The magnetic scalar potential V has the following representations in the
EMM2015 and EMM2017 in terms of the fully-normalized ALF (used in our
algorithm):

V (λ, ϕ′, r, t) = a

N∑
n=1

(a
r

)n+1 n∑
m=0

(gmn (t) cosmλ+ hmn (t) sinmλ)P̆mn (sinϕ′)

= a

N∑
n=1

(a
r

)n+1 n∑
m=0

(cnm cosmλ+ snm sinmλ)P̄nm(cos θ′)

with

cnm =
gmn (t)√
2n+ 1

, snm =
hmn (t)√
2n+ 1

.

4.3.2 Down component

The representation of Z ′ in the fully-normalized ALF takes the form:

Z ′(λ, ϕ′, r) =
∂

∂r
V (λ, ϕ′, r)

= −
N∑
n=1

(n+ 1)
(a
r

)n+2 n∑
m=0

(cnm cosmλ+ snm sinmλ)P̄nm(cos θ′).

Form for spherical polynomial computations:

Z ′(λ, ϕ′, r) = κ(r)F(λ, θ′, r),

where

F(λ, θ′, r) =

N∑
n=1

(a
r

)n+1 n∑
m=0

(anm cosmλ+ bnm sinmλ)P̄nm(cos θ′),

κ(r) =
a

r
, anm = −(n+ 1)cnm, bnm = −(n+ 1)snm.
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Form for ellipsoidal harmonic computations:

Z ′(λ, ϕ′, r) = −a
r

N∑
n=1

(ae
r

)n+1

×
n∑

m=0

(n+ 1)

(
a

ae

)n+1

(cnm cosmλ+ snm sinmλ)P̄nm(cos θ′)

= κ(r)F(λ, θ′, r),

where

F(λ, θ′, r) = κ

N∑
n=1

(ae
r

)n+1 n∑
m=0

(anm cosmλ+ bnm sinmλ)P̄nm(cos θ′),

κ(r) =
a

r
, anm = −(n+ 1)

(
a

ae

)n+1

cnm, bnm = −(n+ 1)

(
a

ae

)n+1

snm.

4.3.3 North component

The representation of X ′ in the fully-normalized ALF is of the form:

X ′(λ, ϕ′, r) = −1

r

∂

∂ϕ′
V (λ, ϕ′, r)

=

N∑
n=1

(a
r

)n+2 n∑
m=0

(cnm cosmλ+ snm sinmλ)
d

dθ′
P̄nm(cos θ′)

=

N∑
n=1

(a
r

)n+2 n∑
m=0

(cnm cosmλ+ snm sinmλ)(αn,mP̄n,m+1 + βn,mP̄n,m−1)

with

αn,m = −1

2

√
(n+m+ 1)(n−m), 0 ≤ m ≤ n,

βn,0 = 0, βn,m =
1

2

√
(1 + δ1,m)(n−m+ 1)(n+m), 1 ≤ m ≤ n.

Note that αn,n = 0 and βn,0 = 0.
Form for spherical polynomial computations:

X ′(λ, ϕ′, r) = κ(r)(F1(λ, θ′, r) cosλ+ F2(λ, θ′, r) sinλ),

where κ(r) = a/r and for j = 1, 2

Fj(λ, θ′, r) =

N∑
n=1

(a
r

)n+1 n∑
m=0

(ajn,m cosmλ+ bjn,m sinmλ)P̄n,m(cos θ′)

with coefficients ajnm, b
j
nm given in Table 1.
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a1n,m =


1√
2

√
n(n+ 1)cn,1, for m = 0;

1
2

√
(n− 1)(n+ 2)cn,2 − 1√

2

√
n(n+ 1)cn,0, for m = 1;

1
2

√
(n−m)(n+m+ 1)cn,m+1

− 1
2

√
(n−m+ 1)(n+m)cn,m−1, for 2 ≤ m ≤ n;

b1n,m =


0, for m = 0;
1
2

√
(n− 1)(n+ 2)sn,2, for m = 1;

1
2

√
(n−m)(n+m+ 1)sn,m+1

− 1
2

√
(n−m+ 1)(n+m)sn,m−1, for 2 ≤ m ≤ n;

a2n,m =


1√
2

√
n(n+ 1)sn,1, for m = 0;

1
2

√
(n− 1)(n+ 2)sn,2, for m = 1;

1
2

√
(n−m)(n+m+ 1)sn,m+1

+ 1
2

√
(n−m+ 1)(n+m)sn,m−1, for 2 ≤ m ≤ n;

b2n,m =


0, for m = 0;

− 1
2

√
(n− 1)(n+ 2)cn,2 − 1√

2

√
n(n+ 1)cn,0, for m = 1;

− 1
2

√
(n−m)(n+m+ 1)cn,m+1

− 1
2

√
(n−m+ 1)(n+m)cn,m−1, for 2 ≤ m ≤ n.

Table 1: Coefficients in the representations of X ′
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Form for ellipsoidal harmonic computations:

X ′(λ, ϕ′, r)

= κ(r)

N∑
n=1

(ae
r

)n+1 n∑
m=0

(
a

ae

)n+1

(cn,m cosmλ+ sn,m sinmλ)

(αn,mP̄n,m+1(cos θ′) + βn,mP̄n,m−1(cos θ′))

= κ(r)

N∑
n=1

(ae
r

)n+1
[

n∑
m=1

(
a

ae

)n+1

(cn,m−1 cos(m− 1)λ+ sn,m−1 sin(m− 1)λ)αn,m−1P̄n,m

+

n−1∑
m=0

(
a

ae

)n+1

, (cn,m+1 cos(m+ 1)λ+ sn,m+1 sin(m+ 1)λ)βn,m+1P̄n,m

]
= κ(r)(F1(λ, θ′, r) cosλ+ F2(λ, θ′, r) sinλ),

where κ(r) = a/r and for j = 1, 2

Fj(λ, θ′, r) =

N∑
n=1

(ae
r

)n+1 n∑
m=0

(ājn,m cosmλ+ b̄jn,m sinmλ)P̄n,m(cos θ′)

with coefficients

ājnm =

(
a

ae

)n+1

ajnm, b̄jnm =

(
a

ae

)n+1

bjnm, j = 1, 2, (1)

and coefficients ajnm, b
j
nm given in Table 1. Note that cnm and snm from Table 1

are multiplied by (a/ae)
n+1 as in the cases of Z ′.

4.3.4 East component

The representation of Y ′ in the fully-normalized ALF takes the form:

Y ′(λ, ϕ′, r) = − 1

r cosϕ′
∂

∂λ
V (λ, ϕ′, r)

=

N∑
n=1

(a
r

)n+2 n∑
m=1

(cnm sinmλ− snm cosmλ)
mP̄nm(cos θ′)

sin θ′

=

N∑
n=1

(a
r

)n+2 n∑
m=1

(cnm sinmλ−snm cosmλ)(αn,mP̄n−1,m+1+βn,mP̄n−1,m−1)

with

αn,m =
1

2

√
2n+ 1

2n− 1

√
(n−m− 1)(n−m), 1 ≤ m ≤ n,

βn,m =
1

2

√
2n+ 1

2n− 1

√
(1 + δ1,m)(n+m− 1)(n+m), 1 ≤ m ≤ n.
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a1n,m =


−
√

2(n+ 1)(n+ 2)sn+1,1, for m = 0;

−
√

(n+ 2)(n+ 3)sn+1,2, for m = 1;

−
√

(n+m+ 1)(n+m+ 2)sn+1,m+1

−
√

(n−m+ 1)(n−m+ 2)sn+1,m−1, for 2 ≤ m ≤ n;

b1n,m =


0, for m = 0;√

(n+ 2)(n+ 3)cn+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)cn+1,m+1

+
√

(n−m+ 1)(n−m+ 2)cn+1,m−1, for 2 ≤ m ≤ n;

a2n,m =


√

2(n+ 1)(n+ 2)cn+1,1, for m = 0;√
(n+ 2)(n+ 3)cn+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)cn+1,m+1

−
√

(n−m+ 1)(n−m+ 2)cn+1,m−1, for 2 ≤ m ≤ n;

b2n,m =


0, for m = 0;√

(n+ 2)(n+ 3)sn+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)sn+1,m+1

−
√

(n−m+ 1)(n−m+ 2)sn+1,m−1, for 2 ≤ m ≤ n.

Table 2: Coefficients in the representations of Y ′

Form for spherical polynomial computations:

Y ′(λ, ϕ′, r)

= κ(r)

N−1∑
n=0

(a
r

)n+1 n+1∑
m=1

(cn+1,m sinmλ−sn+1,m cosmλ)(αn+1,mP̄n,m+1+βn+1,mP̄n,m−1)

= κ(r)(F1(λ, θ′, r) cosλ+ F2(λ, θ′, r) sinλ),

where κ(r) = (a/r)2 and for j = 1, 2

Fj(λ, θ′, r) =

N−1∑
n=0

(a
r

)n+1 n∑
m=0

(ajn,m cosmλ+ bjn,m sinmλ)P̄n,m(cos θ′)

with coefficients ajnm, b
j
nm given in Table 2. This representation holds in view

of αn,n = αn,n−1 = 0.
Form for ellipsoidal harmonic computations:

Y ′(λ, ϕ′, r)

=
(a
r

)2 N∑
n=1

(ae
r

)n n∑
m=1

(
a

ae

)n
(cnm sinmλ− snm cosmλ)

mP̄nm(cos θ′)

sin θ′

14



=
(a
r

)2 N−1∑
n=0

(ae
r

)n+1 n+1∑
m=1

(
a

ae

)n+1

(cn+1,m sinmλ− sn+1,m cosmλ)

(αn+1,mP̄n,m+1(cos θ′) + βn+1,mP̄n,m−1(cos θ′))

= κ(r)(F1(λ, θ′, r) cosλ+ F2(λ, θ′, r) sinλ) (2)

where κ(r) = (a/r)2 and for j = 1, 2

Fj(λ, θ′, r) =

N−1∑
n=0

(ae
r

)n+1 n∑
m=0

(ājn,m cosmλ+ b̄jn,m sinmλ)P̄n,m(cos θ′) (3)

with coefficients

ājnm =

(
a

ae

)n+1

ajnm, b̄jnm =

(
a

ae

)n+1

bjnm, j = 1, 2,

and coefficients ajnm, b
j
nm given in Table 2. Note that cnm and snm from Table 2

are in fact multiplied by (a/ae)
n in this case, not by (a/ae)

n+1 as in the cases
of X ′ and Z ′!

If one wants to normalize cnm and snm from Table 2 with (a/ae)
n+1 as in

the cases of X ′ and Z ′, then (2), (3) can be applied with

κ(r) =
aea

r2
, ājnm =

(
a

ae

)n+2

ajnm, b̄jnm =

(
a

ae

)n+2

bjnm, j = 1, 2.

4.4 From spherical harmonic expansions to ellipsoidal har-
monic expansions

We further write harmonic expansions F(λ, θ′, r) (and F1,F2) in ellipsoidal-
harmonic coordinates (λ, φ, u) r sin θ′ cosλ =

√
u2 + E2 sinφ cosλ,

r sin θ′ sinλ =
√
u2 + E2 sinφ sinλ,

r cos θ′ = u cosφ,

by mapping the coefficients cnm, snm, 0 ≤ m ≤ n, 1 ≤ n ≤ N, with Jekeli’s

transform [1] to c
{ell}
n,m , s

{ell}
n,m , 0 ≤ m ≤ n, 1 ≤ n ≤ N1:

F(λ, θ′, r) = H(λ, φ, u). (4)

The harmonic expansion of H(λ, φ, u) takes the form

H(λ, φ, u) =

N1∑
n=1

n∑
m=0

S̄n,m
(
u
E

)
S̄n,m

(
b
E

) (c{ell}nm cosmλ+ s{ell}nm sinmλ
)
P̄nm(cosφ), (5)

where S̄n,m are Jekeli’s functions and b is the Earth semi-minor axis. In theory
N1 =∞ but in practice N1 = N + 40 (for N = 740 or N = 790) gives (4) with
relative error less than 10−20.
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For every fixed u the functions H(λ, φ, u) and H1(λ, φ, u) cosλ +
H2(λ, φ, u) sinλ are bi-variate trigonometric polynomials of degreeN1 (orN1+1)
and tensor product needlets can be utilized for its fast evaluation (see Subsec-
tions 4.6-4.7). The reason for switching from spherical harmonic expansions to
ellipsoidal harmonic expansions is to guarantee smaller approximation error.

4.5 Evaluation of magnetic quantities in an ellipsoidal
shell

The code emmsynth_fast.m computes an approximation G̃(λ, φ, u) to the mag-
netic quantity G(λ, φ, u), G = X ′, Y ′, Z ′, for u from the ellipsoidal shell
U0 ≤ u ≤ U1 with U0 = b − 415 m and U1 = b + 1, 000, 000 m. This ap-
proximation is obtained by interpolating the values of G on several confocal
ellipses. For a fixed (λ, φ) ∈ S2 if G̃(λ, φ, u) is the Lagrange interpolant of
G(λ, φ, u) at the points uj = u1 + (j−1)h, j = 1, 2, . . . , 2J , then the error takes
the form

G̃(λ, φ, u)−G(λ, φ, u) =
(u− u1) · · · (u− u2J)

(2J)!

∂2JG

∂u2J
(λ, φ, z)

for some z ∈ (u1, u2J). The best choice for u is u ∈ [uJ , uJ+1], where the
product (u − u1) . . . (u − u2J) has a ch2J bound with the smallest constant c.
However, the 2J-th derivative of G with respect to u grows very rapidly as u
approaches b (i.e. the Earth surface and below), which leads to big errors!

In order to reduce the influence of the derivative term on the error we take an
increasing function µ defined on [0, s̄] such that µ(0) = U0, µ′(0) = 0, µ(s̄) = U1

and set
g(λ, φ, s) = G(λ, φ, µ(s)), (λ, φ) ∈ S2, 0 ≤ s ≤ s̄.

µ(s) = U0 +
U1 − U0

s̄4
s4.

This gives us a function g with essentially smaller oscillation of the normal
(with respect to the ellipsoids) derivatives than those of G and at the same
time these derivatives of g can be explicitly expressed in terms of the normal
derivatives of G.

In the code we use 2J point Lagrange interpolation for G, where J = 2 or
J = 3. Thus, for appropriate h, setting sj = jh, j = −J + 1,−J + 2, . . . ,M +J
with µ(sM−1) < U1 ≤ µ(sM ) we pre-compute the values of G(λ`, φk, vj) at
regular points (λ`, φk) ∈ S2 (see §4.6) on confocal ellipsoids of semi-minor axis
vj = µ(sj). Then for the computation of G̃(λ, φ, u) we utilize this algorithm:

1. For u ∈ [U0, U1] find s = µ−1(u) and j ≥ 0 such that s ∈ [sj , sj+1], where
µ−1 denotes the inverse function of µ;

2. Use tensor product needlets (see §4.7) to compute g̃(λ, φ, si) := G̃(λ, φ, vi),
i = j−J+1, j−J+2, . . . , j+J from the values of G at the regular points
from each of these 2J ellipsoids;
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3. Use Lagrange interpolation to compute G̃(λ, φ, u) := g̃(λ, φ, s) from
g̃(λ, φ, si), i = j − J + 1, j − J + 2, . . . , j + J .

Note that the choice of µ as an even function gives v−1 = v1, v−2 = v2,
etc., which allows to only use values of G̃(λ, φ, vj) at points with vj ≥ U0 in

the computation of G̃(λ, φ, u)! Thus we avoid derivatives of G at points with
coordinate u smaller than U0. The choice U0 = b − 415 m allows to include in
the ellipsoidal shell all points above the surface of the Earth.

The binary files emm2015_*.bin and emm2017_*.bin contain the values of
G(λ`, φk, vj)

2
KL , j = 0, 1, . . . ,M + J , for G = X ′, Y ′, Z ′ or their seqular varia-

tions. In order to cover the whole ellipsoidal shell [U0, U1] we use in our code
45 ellipsoids for J = 2 (i.e. M + J = 45) or 30 ellipsoids for J = 3. For K and
L see formula (6) and Subsection 4.6.

4.6 Regular grids

The regular grids on ellipsoids we use in the codes are given in ellipsoidal-
harmonic coordinates (λ, φ) by

X = {xk,` = (λ`, φk) : k = 0, 1, . . . ,K, ` = 0, 1, . . . , L− 1},

where

φk =
πk

K
, k = 0, 1, . . . ,K; λ` =

2π`

L
, ` = 0, 1, . . . , L− 1.

Here L must be even in order to allow the values of the same grid to be used
for continuation through the poles.

In our code K = 1481 and L = 2960 for both magnetic models.

4.7 Evaluation of bi-variate trigonometric polynomials

As shown in §4.3–4.4 the restriction of any of the quantities f = X ′/κ, Y ′/κ,
Z ′/κ on any ellipsoid confocal with the Earth reference ellipsoid is a bi-variate
trigonometric polynomial in λ and φ of degree at most N1 + 1. Similarly, the
restrictions of f on any sphere centred at the centre of the Earth is a bi-variate
trigonometric polynomial in λ and θ′ of degree at most N .

The bi-variate trigonometric polynomial f(λ, φ) is evaluated at a point
(λ, φ) ∈ S2 by tensor product trigonometric needlets of the form

f̃(λ, φ) =
∑

|φ−φk|≤δ1

∑
|λ−λ`|≤δ2

K1(φ− φk)K2(λ− λ`)
2

KL
f(λ`, φk), (6)

where K1 and K2 are trigonometric needlet kernels in λ and φ, respectively.
We chose in the code both the number of knots {φk} on the interval [φ −

δ1, φ+ δ1] and the number of knots {λ`} on the interval [λ− δ2, λ+ δ2] to be 18
for target accuracy ParKer(3)= 0.43 · 10−5.
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In (6) for λ close to 0 or to 2π we assume that the definition of λ` from §4.6
is extended by the same formula for ` < 0 or ` ≥ L, which implies the periodic
extension f(λ + 2π, φ) = f(λ, φ) of f . Similarly, for φ close to 0 or to π we
extend the definition of φk from §4.6 by the same formula for k < 0 or k > K,
which implies the even semi-periodic extension f(λ + π,−φ) = f(λ, φ) in the
case of Z ′, and the odd semi-periodic extension f(λ+ π,−φ) = −f(λ, φ) in the
case of X ′, Y ′. These extensions do not require evaluation of the polynomial f
at new points (λ`, φk) whenever L is even!

The extended grid dimensions in our code are 1498× 2977 nodes.

4.8 Accuracy

For every component G of the magnetic field, where G denotes one of
X ′, Y ′, Z ′, X, Y, Z,H, F as given by the magnetic model, our code is designed
to compute an approximation G̃ to G so that

|G̃(λ, φ, h, t)−G(λ, φ, h, t)| < 1 nT,

where −1800 ≤ λ ≤ 1800, −900 ≤ φ ≤ 900, −415 ≤ h ≤ 1, 000, 000 m and
2015 ≤ t ≤ 2020 for EMM2015 or 2017 ≤ t ≤ 2022 for the predictive part of
EMM2017.

The largest error we have observed for any of these quantities does not exceed
0.3251 nT for EMM2015 or 0.4804 nT for the predictive part of EMM2017.
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5 Code emmsynth fast.m

The code emmsynth_fast.m is the main program designed to perform fast an
accurate evaluation of the geomagnetic field components. The code uses:

• the keyboard input of the selected magnetic model (enter 1 for EMM2015
or 2 for the predictive part of EMM2017);

• the keyboard input of the decimal year of computation in the range
from 2015 to 2020 for EMM2015 or in the range from 2017 to 2022 for
EMM2017;

• the emmsynth_init.m produced six binary data files emm2015_*.bin or
emm2017_*.bin (depending on the selected magnetic model) as described
in §2.4;

• the user-defined point coordinates file scattered_points.dat as de-
scribed in §2.1.

The output is given in the file scattered_points_values.dat. It contains the
magnetic field components’ values, as described in §2.2, at the scattered points
from the input file scattered_points.dat.

The algorithm for approximate evaluation of the magnetic field is described
in §4. For the fast evaluation of the magnetic field at 15,000,000 points MAT-
LAB uses 8.24 GB of RAM, while for 30,000,000 points it needs 10.83 GB. The
code can be easily modified to parallel the input, the approximate evaluation
and the output in order to reduce the memory usage.
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6 Code emmsynth init.m

The code emmsynth_init.m is an auxiliary program designed to produce the six
binary data files emm201?_*.bin, which are not included in the package because
of their 9 GB size in total for the respective model. These files are necessary to
initialize emmsynth_fast.m.

The user selects from the keyboard the magnetic model (enter 1 for
EMM2015 or 2 for the predictive part of EMM2017). The code computes the
magnetic field components’ weighted values at regular points located on confocal
ellipsoids from the EMM2015 coefficients files EMM2015.COF and EMM2015SV.COF

or from the EMM2017 coefficients files EMM2017.COF and EMM2017SV.COF. The
“standard” method for evaluating surface spherical harmonic gridded values is
applied. The grid is further extended as explained in §4.6 and §4.7.

On the computer where the tests were performed it takes approximately
17.3 minutes to run the code for EMM2015 and 18.5 minutes for EMM2017.
The memory requirements for emmsynth_init.m are weaker than the memory
requirements for emmsynth_fast.m.
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7 Code emmsynth standard.m

The purpose of the code emmsynth_standard.m is to test the accuracy of the
main code emmsynth_fast.m and to be used as a benchmark for its speed.

The code emmsynth_standard.m evaluates the magnetic field components
using the standard methods for spherical harmonic computation based of the
model coefficients included in EMM201?.COF and EMM201?SV.COF. Note that both
the north component in geocentric coordinates X ′ and the east component in
geocentric coordinates Y ′ are represented as sums of two harmonic functions in
order to achieve stable representations everywhere on the Earth. The evaluation
of the spherical harmonic series is done in spherical coordinates without passing
to ellipsoidal harmonic coordinates as in the other two codes.

The input for the testing program consists of the selected magnetic
model and the decimal year of computation (as for emmsynth_fast.m), the
magnetic model coefficients read from EMM201?.COF and EMM201?SV.COF

and the file scattered_points_values.dat. In order to check the
accuracy of emmsynth_fast.m one runs emmsynth_standard.m with
the same magnetic model and year on the emmsynth_fast.m output
scattered_points_values.dat.

Among the displayed program statistics of emmsynth_standard.m one
can find the absolute errors of the magnetic field components computed by
emmsynth_fast.m. The speed of our realization of the two methods can be
compared using the reported numbers “Retrieved points per second”. In both
programs these numbers are formed on the base of pure computational time,
ignoring the time necessary to read the input or to write the output.

When emmsynth_standard.m is run after emmsynth_fast.m one should use
the input file scattered_points.dat with no more than 60,000 points due to
the slow speed of the “standard” code. (On the standard laptop we use (see §8)
emmsynth_standard.m processes 60,000 points for more than 10 minutes.) The
memory requirements for emmsynth_standard.m are weaker than the memory
requirements for emmsynth_fast.m.
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8 Experiments

The software has been extensively tested on a PC with Intel Core i7-8759H CPU
@ 2.2 GHz, 32 GB of RAM and 1000 GB SSD used to store the binary data
files emm201?_*.bin and the input file scattered_points.dat. As reported
in §5 program emmsynth_fast.m uses less than 11 GB of RAM for retrieving
30,000,000 points.

The tests are conducted using MATLAB R2016a under WINDOWS 10.

8.1 The test files

The test input file scattered_points.dat consists of the geographical geodetic
coordinates of 1,000 (or 1,000,000) points, such that the latitude, the longitude
and height are randomly distributed in the range [−90, 90], [−180, 180) degrees
and [−0.415, 1000] km, respectively.

8.2 Tests

Testing statistics of program emmsynth_init.m, program emmsynth_fast.m for
the test input files scattered_points.dat with 1,000,000 and 1,000 points and
of program emmsynth_standard.m with 1,000 points follow.

8.2.1 Tests with EMM2015

---------------------------------------------------------------

Model: EMM2015, Program: emmsynth_init

---------------------------------------------------------------

Total time = 1037.083 CPU seconds

Coefficients load time = 1.047 CPU seconds

Coefficients formation time = 9.184 CPU seconds

Synthesis time = 1020.297 CPU seconds

Values write time = 2.831 CPU seconds

---------------------------------------------------------------

---------------------------------------------------------------

Program: emmsynth_fast, Model: EMM2015

Evaluation year: = 2018.75

---------------------------------------------------------------

Total time = 75.163 CPU seconds

Grid values load time = 8.204 CPU seconds

Coordinates load time = 2.046 CPU seconds

Synthesis time = 56.728 CPU seconds

Values write time = 7.842 CPU seconds

Total number of points = 1000000

Retrieved points per second = 17627.9791

---------------------------------------------------------------
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---------------------------------------------------------------

Program: emmsynth_fast, Model: EMM2015

Evaluation year: = 2018.75

---------------------------------------------------------------

Total time = 11.7 CPU seconds

Grid values load time = 11.278 CPU seconds

Coordinates load time = 0.015 CPU seconds

Synthesis time = 0.063 CPU seconds

Values write time = 0.015 CPU seconds

Total number of points = 1000

Retrieved points per second = 15873.0159

---------------------------------------------------------------

---------------------------------------------------------------

Program: emmsynth_standard, Model: EMM2015

Evaluation year: = 2018.75

---------------------------------------------------------------

Total time = 11.137 CPU seconds

Coordinate load time = 0.014 CPU seconds

Model load time = 0.313 CPU seconds

Coefficient formation time = 0.078 CPU seconds

Synthesis time = 10.732 CPU seconds

Values write time = 0 CPU seconds

Total number of points = 1000

Execution time per point = 0.010732 CPU seconds

Retrieved points per second = 93.1793

---------------------------------------------------------------

Maximal absolute errors at the given scattered points

---------------------------------------------------------------

Xprime: 0.019147

Yprime: 0.0090415

Zprime: 0.030893

North component X: 0.019133

East component Y: 0.0090415

Down component Z: 0.030803

Horizontal intensity H: 0.015265

Total intensity F: 0.032836

Inclination I: 6.5538e-07

Declination D 3.9706e-06

---------------------------------------------------------------
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8.2.2 Tests with EMM2017

---------------------------------------------------------------

Program: emmsynth_init, Model: EMM2017

---------------------------------------------------------------

Total time = 1109.383 CPU seconds

Coefficients load time = 1.078 CPU seconds

Coefficients formation time = 10.493 CPU seconds

Synthesis time = 1092.383 CPU seconds

Values write time = 2.828 CPU seconds

---------------------------------------------------------------

---------------------------------------------------------------

Program: emmsynth_fast, Model: EMM2017

Evaluation year: = 2018.75

---------------------------------------------------------------

Total time = 74.889 CPU seconds

Grid values load time = 8.53 CPU seconds

Coordinates load time = 2.046 CPU seconds

Synthesis time = 56.112 CPU seconds

Values write time = 7.842 CPU seconds

Total number of points = 1000000

Retrieved points per second = 17821.4999

---------------------------------------------------------------

---------------------------------------------------------------

Program: emmsynth_fast, Model: EMM2017

Evaluation year: = 2018.75

---------------------------------------------------------------

Total time = 8.877 CPU seconds

Grid values load time = 8.377 CPU seconds

Coordinates load time = 0 CPU seconds

Synthesis time = 0.062 CPU seconds

Values write time = 0.032 CPU seconds

Total number of points = 1000

Retrieved points per second = 16129.0323

---------------------------------------------------------------

---------------------------------------------------------------

Program: emmsynth_standard, Model: EMM2017

Evaluation year: = 2018.75

---------------------------------------------------------------

Total time = 13.027 CPU seconds

Coordinate load time = 0.014 CPU seconds

Model load time = 0.328 CPU seconds

Coefficient formation time = 0.109 CPU seconds

Synthesis time = 12.56 CPU seconds
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Values write time = 0.016 CPU seconds

Total number of points = 1000

Execution time per point = 0.01256 CPU seconds

Retrieved points per second = 79.6178

---------------------------------------------------------------

Maximal absolute errors at the given scattered points

---------------------------------------------------------------

Xprime: 0.015314

Yprime: 0.012529

Zprime: 0.036069

North component X: 0.015332

East component Y: 0.012529

Down component Z: 0.036012

Horizontal intensity H: 0.015301

Total intensity F: 0.037703

Inclination I: 2.2742e-07

Declination D 5.3011e-06

---------------------------------------------------------------
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8.2.3 Test Comments

The absolute errors measured for the 1,000 point test file vary from 0.032836 to
0.0090415 nT for EMM2015 and from 0.037703 to 0.012529 nT for EMM2017.
The largest absolute errors we have observed are 0.3251 nT for EMM2015 and
0.4804 nT for EMM2017. Recall that the code is designed to evaluate the
magnetic field elements with error not exceeding 1 nT.

The improvement in computational speed of our code (measured by
Retrieved points per second) compared to the software using the standard
spherical harmonic series method is given in the last column of Table 3.

Enhanced emmsynth fast emmsynth standard improvement
Magnetic Model (1,000,000 points) (1,000 points) (times)

EMM2015 17627.98 93.18 189.18
EMM2017 17821.50 79.62 223.83

Table 3: Retrieved points per second for emmsynth standard.m and
emmsynth fast.m and the improvement in computational speed

The 1,000,000 point input file is used to measure the speed of
emmsynth_fast.m because the speed for the 1,000 point input file is unre-
liable due to the small CPU time interval. The computational speed of
emmsynth_standard.m is stable for the 1,000 point input file.

The larger improvement in speed for EMM2017 is induced by the slower
speed of emmsynth_standard.m for this model, which is caused by its higher
degree – 790 for EMM2017 compared with 740 for EMM2015.

8.3 Other experiments

The code emmsynth_fast.m has been tested on up to 30, 000, 000 points, which
were processed at the speed of the second column of Table 3.

The code emmsynth_fast.m uses six data files emm201?_*.dat of total
size 9 GB. We have modified emmsynth_init.m and emmsynth_fast.m to
emmsynth_init0.m and emmsynth_fast0.m, which produced and used data files
of total size 6 GB. In order to achieve the same error bound of 1 nT on smaller
amount of data the code emmsynth_fast0.m uses 5-th degree Lagrange inter-
polation (cf §4.5), which reduces the speed, as shown in Table 4.

Enhanced emmsynth fast0 emmsynth standard improvement
Magnetic Model (1,000,000 points) (1,000 points) (times)

EMM2015 11911.99 93.18 127.84

Table 4: Retrieved points per second for emmsynth standard.m and
emmsynth fast0.m and the improvement in computational speed
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9 Conclusions

The experiments with the software described above demonstrate the capability
of our needlet method for fast evaluation of magnetic field components repre-
sented in terms of solid spherical harmonics at scattered points in space. The
current version emmsynth_fast.m of our software runs from 189 to 224 times
faster than the software using the standard spherical harmonic series method.
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