feedgnuplot/bin/feedgnuplot

2531 lines
80 KiB
Perl
Executable File

#!/usr/bin/env perl
package feedgnuplot; # for the metacpan indexer
use strict;
use warnings;
use Getopt::Long;
use Time::HiRes qw( usleep gettimeofday tv_interval );
use IO::Handle;
use IO::Select;
use List::Util qw( first );
use List::MoreUtils 'any';
use Scalar::Util qw( looks_like_number );
use Text::ParseWords; # for shellwords
use Pod::Usage;
use Time::Piece;
# Makefile.PL assumes this is in ''
my $VERSION = '1.60';
my %options;
interpretCommandline();
# list containing the plot data. Each element is a hashref of parameters.
# $curve->{datastring} is a string of all the data in this curve that can be
# sent directly to gnuplot. $curve->{datastring_meta} is a hashref {domain =>
# ..., offset_start => ...}. offset_start represents a position in the
# datastring where this particular data element begins. As the data is culled
# with --xlen, the offsets are preserved by using $curve->{datastring_offset} to
# represent the offset IN THE ORIGINAL STRING of the current start of the
# datastring
my @curves = ();
# Maps a curve ID to the corresponding curve
my %curveFromID = ();
# Whether any new data has arrived since the last replot
my $haveNewData;
# when the last replot happened
my $last_replot_time = [gettimeofday];
# whether the previous replot was timer based
my $last_replot_is_from_timer = 1;
my $this_replot_is_from_timer;
sub getRangeSize
{
my ($id) = @_;
# I'd like to use //, but I guess some people are still on perl 5.8
return
exists $options{rangesize_hash}{$id} ?
$options{rangesize_hash}{$id} :
$options{rangesize_default};
}
sub interpretCommandline
{
# if I'm using a self-plotting data file with a #! line, then $ARGV[0] will contain ALL of the
# options and $ARGV[1] will contain the data file to plot. In this case I need to split $ARGV[0] so
# that GetOptions() can parse it correctly. On the other hand, if I'm plotting normally (not with
# #!) a file with spaces in the filename, I don't want to split the filename. Hopefully this logic
# takes care of both those cases.
if (exists $ARGV[0] && !-r $ARGV[0])
{
unshift @ARGV, shellwords shift @ARGV;
}
# everything off by default:
# do not stream in the data by default
# point plotting by default.
# no monotonicity checks by default
# normal histograms by default
$options{ maxcurves } = 100;
$options{ histstyle} = 'freq';
# Previously I was using 'legend=s%' and 'curvestyle=s%' for curve addressing. This had cleaner
# syntax, but disregarded the order of the given options. This resulted in arbitrarily ordered
# curves. I thus make parse these into lists, and then also make hashes, for later use
# needed for these to be parsed into an array-ref, these default to []
$options{legend} = [];
$options{curvestyle} = [];
$options{style} = [];
$options{every} = [];
$options{using} = [];
$options{histogram} = [];
$options{x1y2} = [];
$options{x2y1} = [];
$options{x2y2} = [];
$options{extracmds} = [];
$options{cmds} = [];
$options{set} = [];
$options{unset} = [];
$options{equation} = [];
$options{'equation-below'} = [];
$options{'equation-above'} = [];
$options{curvestyleall} = '';
$options{styleall} = '';
$options{with} = '';
$options{rangesize} = [];
$options{tuplesize} = [];
GetOptions(\%options, 'stream:s', 'domain!', 'dataid!', 'vnlog!', 'xticlabels!',
'3d!', 'colormap!', 'lines!', 'points!', 'circles',
'legend=s{2}', 'autolegend!',
'xlabel=s', 'x2label=s', 'ylabel=s', 'y2label=s', 'zlabel=s',
'title=s', 'xlen=f',
'xmin=s', 'xmax=s', 'x2min=s', 'x2max=s',
'ymin=f', 'ymax=f', 'y2min=f', 'y2max=f',
'zmin=f', 'zmax=f',
'x2=s@', 'y2=s@', 'x1y2=s@', 'x2y1=s@', 'x2y2=s@',
'style=s{2}', 'curvestyle=s{2}', 'curvestyleall=s', 'styleall=s', 'with=s',
'extracmds=s@', 'cmds=s@',
'set=s@', 'unset=s@',
'every=s{2}', 'everyall=s',
'using=s{2}', 'usingall=s',
'square!', 'square_xy!', 'square-xy!', 'squarexy!', 'hardcopy=s', 'maxcurves=i', 'monotonic!', 'timefmt=s',
'equation=s@', 'equation-below=s@', 'equation-above=s@',
'image=s',
'histogram=s@', 'binwidth=f', 'histstyle=s',
'terminal=s',
'rangesize=s{2}', 'rangesizeall=i',
'tuplesize=s{2}', 'tuplesizeall=i',
'extraValuesPerPoint=i', # deprecated and undocumented
'help', 'dump', 'exit', 'version',
'geometry=s') or exit 1;
# handle various cmdline-option errors
if ( $options{help} )
{
pod2usage( -exitval => 0,
-verbose => 1, # synopsis and args
-output => \*STDOUT );
}
if( $options{version} )
{
print "feedgnuplot version $VERSION\n";
exit 0;
}
# --style and --curvestyle are synonyms, as are --styleall and
# --curvestyleall, so fill that in
if( $options{styleall} )
{
if($options{curvestyleall} ) { $options{curvestyleall} .= " $options{styleall}"; }
else { $options{curvestyleall} = $options{styleall}; }
delete $options{styleall};
}
# various square-xy synonyms
$options{'square_xy'} = 1 if $options{'square-xy'} || $options{'squarexy'};
# --extracmds is a synonym for --cmds
push @{$options{extracmds}}, @{$options{cmds}};
$options{cmds} = [];
push @{$options{curvestyle}}, @{$options{style}};
delete $options{style};
if( $options{curvestyleall} && $options{with} )
{
print STDERR "--curvestyleall and --with are mutually exclusive. Please just use one.\n";
exit -1;
}
if( $options{with} )
{
$options{curvestyleall} = "with $options{with}";
delete $options{with};
}
if( $options{dataid} && $options{vnlog} )
{
print STDERR "--dataid and --vnlog are mutually exclusive. Please just use one.\n";
exit -1;
}
# expand options that are given as comma-separated lists
for my $listkey (qw(histogram x2 y2 x1y2 x2y1 x2y2))
{
@{$options{$listkey}} = map split('\s*,\s*', $_), @{$options{$listkey}}
if defined $options{$listkey};
}
for my $listkey (qw(curvestyle rangesize tuplesize every using))
{
next unless defined $options{$listkey};
my @in = @{$options{$listkey}};
my $N = @in / 2;
my @out;
for my $i (0..$N-1)
{
my $key = $in[2*$i];
my $value = $in[2*$i + 1];
for my $key_new (split('\s*,\s*', $key))
{
push @out, $key_new, $value;
}
}
@{$options{$listkey}} = @out;
}
# handle x2 == x2y1 and y2 == x1y2
push @{$options{x2y1}}, @{$options{x2}} if defined $options{x2};
push @{$options{x1y2}}, @{$options{y2}} if defined $options{y2};
$options{x2} = [];
$options{y2} = [];
# convert all tuplesize business to rangesize
my $domainsize = $options{'3d'} ? 2 : 1;
if (defined $options{tuplesizeall})
{
if (defined $options{rangesizeall} )
{
print STDERR "Only one of --rangesizeall and --tuplesizeall may be given\n";
exit -1;
}
$options{rangesizeall} = $options{tuplesizeall} - $domainsize;
delete $options{tuplesizeall};
}
if (defined $options{tuplesize})
{
$options{rangesize} //= [];
my $N = @{$options{tuplesize}} / 2;
for my $i (0..$N-1)
{
$options{tuplesize}[2*$i + 1] -= $domainsize;
}
push @{$options{rangesize}}, @{$options{tuplesize}};
delete $options{tuplesize};
}
# If we're plotting histograms, then set the default histogram options for
# each histogram curve
#
# Apply this to plain (non-cumulative) histograms
if( !$options{curvestyleall} && $options{histstyle} =~ /freq|fnorm/ )
{
for my $hist_curve(@{$options{histogram}})
{
# If we don't specify any options specifically for this histogram, use
# the defaults: filled boxes with borders
if( !any { $options{curvestyle}[$_*2] eq $hist_curve } 0..(@{$options{curvestyle}}/2 - 1) )
{
push @{$options{curvestyle}}, ($hist_curve, 'with boxes fill solid border lt -1');
}
}
}
# --legend and --curvestyle options are conceptually hashes, but are parsed as
# arrays in order to preserve the ordering. I parse both of these into hashes
# because those are useful to have later. After this I can access individual
# legends with $options{legend_hash}{curveid}
for my $listkey (qw(legend curvestyle rangesize every using))
{
$options{"${listkey}_hash"} = {};
my $n = scalar @{$options{$listkey}}/2;
foreach my $idx (0..$n-1)
{
$options{"${listkey}_hash"}{$options{$listkey}[$idx*2]} = $options{$listkey}[$idx*2 + 1];
}
}
if ( defined $options{hardcopy} && defined $options{stream} )
{
print STDERR "--stream doesn't make sense together with --hardcopy\n";
exit -1;
}
if ( defined $options{rangesizeall} && defined $options{extraValuesPerPoint} )
{
print STDERR "Only one of --rangesizeall and --extraValuesPerPoint may be given\n";
exit -1;
}
# I now set up the rangesize to always be
#
# $options{rangesize_hash}{$id} // $options{rangesize_default}
#
# which is available as getRangeSize($id)
if ( $options{rangesizeall} )
{
$options{rangesize_default} = $options{rangesizeall};
}
else
{
$options{rangesize_default} = 1;
$options{rangesize_default} += $options{extraValuesPerPoint} if ($options{extraValuesPerPoint});
$options{rangesize_default}++ if ($options{colormap});
$options{rangesize_default}++ if ($options{circles} );
}
# parse stream option. Allowed only numbers >= 0 or 'trigger'. After this code
# $options{stream} is
# -1 for triggered replotting
# >0 for timed replotting
# undef if not streaming
#
# Note that '0' is not allowed, so !$options{stream} will do the expected
# thing
if(defined $options{stream})
{
# if no streaming period is given, default to 1Hz.
$options{stream} = 1 if $options{stream} eq '';
if( !looks_like_number $options{stream} )
{
if($options{stream} eq 'trigger')
{
$options{stream} = 0;
}
else
{
print STDERR "--stream can only take in values >=0 or 'trigger'\n";
exit -1;
}
}
if ( $options{stream} == 0 )
{
$options{stream} = -1;
}
elsif ( $options{stream} <= 0)
{
print STDERR "--stream can only take in values >=0 or 'trigger'\n";
exit -1;
}
}
if ($options{colormap})
{
# colormap styles all curves with palette. Seems like there should be a way to do this with a
# global setting, but I can't get that to work
$options{curvestyleall} .= ' palette';
}
if ( defined $options{binwidth} && !@{$options{histogram}} )
{
print STDERR "--binwidth doesn't make sense without any histograms\n";
exit -1;
}
if ( $options{'3d'} )
{
if ( !$options{domain} )
{
print STDERR "--3d only makes sense with --domain\n";
exit -1;
}
if ( $options{timefmt} )
{
print STDERR "--3d makes no sense with --timefmt\n";
exit -1;
}
if ( defined $options{x2min} || defined $options{x2max} ||
defined $options{y2min} || defined $options{y2max} ||
@{$options{x1y2}} || @{$options{x2y1}} || @{$options{x2y2}} )
{
print STDERR "--3d does not make sense with --x2... or --y2...\n";
exit -1;
}
if ( defined $options{xlen} )
{
print STDERR "--3d does not make sense with --xlen\n";
exit -1;
}
if ( defined $options{monotonic} )
{
print STDERR "--3d does not make sense with --monotonic\n";
exit -1;
}
if ( @{$options{histogram}} )
{
print STDERR "--3d does not make sense with histograms\n";
exit -1;
}
if ( defined $options{circles} )
{
print STDERR "--3d does not make sense with circles (gnuplot doesn't support this)\n";
exit -1;
}
if ( $options{xticlabels} )
{
print STDERR "--3d makes no sense with --xticlabels\n";
exit -1;
}
}
else
{
if ( $options{timefmt} && !$options{domain} && !@{$options{histogram}} )
{
print STDERR "--timefmt makes sense only with --domain or --histogram\n";
exit -1;
}
if(!$options{colormap})
{
if ( defined $options{zmin} || defined $options{zmax} || defined $options{zlabel} )
{
print STDERR "--zmin/zmax/zlabel only makes sense with --3d or --colormap\n";
exit -1;
}
}
if ( defined $options{square_xy} )
{
print STDERR "--square_xy only makes sense with --3d\n";
exit -1;
}
if ( $options{xticlabels} && @{$options{histogram}})
{
print STDERR "--histogram makes no sense with --xticlabels\n";
exit -1;
}
for my $hist_curve(@{$options{histogram}})
{
my $hist_dim = getRangeSize($hist_curve);
if( $hist_dim != 1 )
{
print STDERR "I only support 1D histograms, but curve '$hist_curve' has '$hist_dim'-D data\n";
exit -1;
}
}
}
if(defined $options{xlen} && !$options{stream} )
{
print STDERR "--xlen does not make sense without --stream\n";
exit -1;
}
if($options{stream} && defined $options{xlen} &&
( defined $options{xmin} || defined $options{xmax}) &&
!defined $options{histogram})
{
print STDERR "With --stream and --xlen the X bounds are set, so neither --xmin nor --xmax make sense\n";
exit -1;
}
# --xlen implies an order to the data, so I force monotonicity
$options{monotonic} = 1 if defined $options{xlen};
if( $options{histstyle} !~ /freq|cum|uniq|cnorm|fnorm/ )
{
print STDERR "unknown histstyle. Allowed are 'freq...', 'fnorm...', 'cum...', 'uniq...', 'cnorm...'\n";
exit -1;
}
# deal with timefmt
if ( $options{timefmt} )
{
# I need to compute a regex to match the time field and I need to count how
# many whilespace-separated fields there are.
# strip leading and trailing whitespace
$options{timefmt} =~ s/^\s*//;
$options{timefmt} =~ s/\s*$//;
my $Nfields = () = split /\s+/, $options{timefmt}, -1;
$options{timefmt_Ncols} = $Nfields;
# make sure --xlen is an integer. With a timefmt xlen goes through strptime
# and strftime, and those are integer-only
if( defined $options{xlen} )
{
if( $options{xlen} - int($options{xlen}) )
{
print STDERR "When streaming --xlen MUST be an integer. Rounding up to the nearest second\n";
$options{xlen} = 1 + int($options{xlen});
}
}
}
# deal with --image. I just fill in --equation, and reverse the y extents if
# none are explicitly given
if( defined $options{image} )
{
# images generally have the origin at the top-left instead of the
# bottom-left, so given nothing else, I flip the y axis
if( !defined $options{xmin} && !defined $options{xmax} &&
!defined $options{ymin} && !defined $options{ymax} &&
! any { /^ *xrange\b/ } @{$options{set}} &&
! any { /^ *yrange\b/ } @{$options{set}} )
{
push @{$options{set}}, "xrange [:] noextend";
push @{$options{set}}, "yrange [:] reverse noextend";
}
if ( ! -r $options{image} )
{
die "Couldn't read image '$options{image}'";
}
unshift @{$options{equation}}, qq{"$options{image}" binary filetype=auto flipy with rgbimage title "$options{image}"};
delete $options{image};
}
# --equation-below is a synonym of --equation
push @{$options{equation}}, @{$options{'equation-below'}};
@{$options{'equation-below'}} = [];
}
sub getGnuplotVersion
{
open(GNUPLOT_VERSION, 'gnuplot --version |') or die "Couldn't run gnuplot";
my ($gnuplotVersion) = <GNUPLOT_VERSION> =~ /gnuplot\s*(\d*\.\d*)/;
if (!$gnuplotVersion)
{
print STDERR "Couldn't find the version of gnuplot. Does it work? Trying anyway...\n";
$gnuplotVersion = 0;
}
close(GNUPLOT_VERSION);
return $gnuplotVersion;
}
sub sendRangeCommand
{
my ($name, $min, $max) = @_;
return unless defined $min || defined $max;
if( defined $min )
{ $min = "\"$min\""; }
else
{ $min = ''; }
if( defined $max )
{ $max = "\"$max\""; }
else
{ $max = ''; }
my $cmd = "set $name [$min:$max]\n";
print PIPE $cmd;
}
sub makeDomainNumeric
{
my ($domain0) = @_;
if ( $options{timefmt} )
{
my $timepiece = Time::Piece->strptime( $domain0, $options{timefmt} )
or die "Couldn't parse time format. String '$domain0' doesn't fit format '$options{timefmt}'";
return $timepiece->epoch();
}
return $domain0;
}
my $prev_timed_replot_time = [gettimeofday];
my $pipe_in;
my $selector;
my $line_number = 0;
my $is_stdin = !@ARGV; # read stdin only if no data files given on the cmdline
sub openNextFile
{
my $fd;
if($is_stdin)
{
$fd = IO::Handle->new();
$fd->fdopen(fileno(STDIN), "r") or die "Couldn't open STDIN";
}
else
{
my $filename = shift @ARGV;
$fd = IO::File->new($filename, "r") or die "Couldn't open file '$filename'";
}
my $selector = IO::Select->new( $fd );
return ($fd, $selector);
}
sub getNextLine
{
sub getline_internal
{
while(1)
{
my $line = $pipe_in->getline();
if( !$is_stdin && !defined $line && $pipe_in->eof() && @ARGV)
{
# I got to the end of one file, so open the next one (which I'm
# sure exists)
($pipe_in, $selector) = openNextFile();
next;
}
return $line;
}
}
if( !defined $pipe_in )
{
($pipe_in, $selector) = openNextFile();
}
while(1)
{
$this_replot_is_from_timer = undef;
# if we're not streaming, or we're doing triggered-only replotting, simply
# do a blocking read
if (! $options{stream} || $options{stream} < 0)
{
$line_number++;
return getline_internal();
}
my $now = [gettimeofday];
my $time_remaining = $options{stream} - tv_interval($prev_timed_replot_time, $now);
if ( $time_remaining < 0 )
{
$prev_timed_replot_time = $now;
$this_replot_is_from_timer = 1;
return 'replot';
}
if ($selector->can_read($time_remaining))
{
$line_number++;
return getline_internal();
}
}
}
sub mainThread
{
local *PIPE;
my $outputfile;
my $outputfileType;
if( defined $options{hardcopy})
{
$outputfile = $options{hardcopy};
if( $outputfile =~ /^[^|] # starts with anything other than |
.* # stuff in the middle
\.(eps|ps|pdf|png|svg|gp)$/ix) # ends with a known extension
{
$outputfileType = lc $1;
}
my %terminalOpts =
( eps => 'postscript noenhanced solid color eps',
ps => 'postscript noenhanced solid color landscape 12',
pdf => 'pdfcairo noenhanced solid color font ",12" size 8in,6in',
png => 'pngcairo noenhanced size 1024,768 transparent crop font ",12"',
svg => 'svg noenhanced solid dynamic size 800,600 font ",14"',
gp => 'gp');
if( !defined $options{terminal} &&
defined $outputfileType &&
$terminalOpts{$outputfileType} )
{
$options{terminal} = $terminalOpts{$outputfileType};
}
die "Asked to plot to file '$outputfile', but I don't know which terminal to use, and no --terminal given"
unless $options{terminal};
}
sub gpterminal
{
return defined $options{terminal} && $options{terminal} eq 'gp';
}
sub datadump_only
{
return
exists $options{dump} ||
gpterminal();
}
sub search_PATH
{
for my $pathdir (File::Spec->path())
{
my $gnuplot_execpath = File::Spec->catfile($pathdir, $_[0]);
return $gnuplot_execpath
if -x $gnuplot_execpath && ! -d $gnuplot_execpath;
}
return undef;
}
if(datadump_only())
{
if(gpterminal())
{
open PIPE, '>', $outputfile;
my $gnuplotpath = search_PATH('gnuplot');
if(!defined $gnuplotpath)
{
print STDERR "Couldn't find the gnuplot executable path. Creating .gp file still, but omitting #!. This will NOT be self-executable";
}
else
{
chmod 0755, $outputfile;
print PIPE "#!$gnuplotpath\n";
}
}
else
{
*PIPE = *STDOUT;
}
}
else
{
my $dopersist = '';
if ( getGnuplotVersion() >= 4.3 && # --persist not available before this
# --persist is needed for the "half-alive" state (see documentation for
# --exit). This state is only used with these options:
!$options{stream} && $options{exit}) {
$dopersist = '--persist';
}
# We trap SIGINT to kill the data input, but keep the plot up. see
# documentation for --exit
if ($options{stream} && !$options{exit})
{
$SIG{INT} = sub
{
print STDERR "$0 received SIGINT. Send again to quit\n";
$SIG{INT} = undef;
};
}
my $geometry = defined $options{geometry} ?
"-geometry $options{geometry}" : '';
open PIPE, "|gnuplot $geometry $dopersist" or die "Can't initialize gnuplot\n";
autoflush PIPE 1;
}
if(!gpterminal())
{
print PIPE "set terminal $options{terminal}\n" if $options{terminal};
print PIPE "set output \"$outputfile\"\n" if $outputfile;
}
# set up plotting style
my $style = '';
if($options{lines}) { $style .= 'lines';}
if($options{points}) { $style .= 'points';}
if($options{circles})
{
$options{curvestyleall} = "with circles $options{curvestyleall}";
}
print PIPE "set style data $style\n" if $style;
print PIPE "set grid\n";
print(PIPE "set xlabel \"$options{xlabel }\"\n") if defined $options{xlabel};
print(PIPE "set x2label \"$options{x2label}\"\n") if defined $options{x2label};
print(PIPE "set ylabel \"$options{ylabel }\"\n") if defined $options{ylabel};
print(PIPE "set y2label \"$options{y2label}\"\n") if defined $options{y2label};
print(PIPE "set zlabel \"$options{zlabel }\"\n") if defined $options{zlabel};
print(PIPE "set title \"$options{title }\"\n") if defined $options{title};
if($options{square})
{
# set a square aspect ratio. Gnuplot does this differently for 2D and 3D plots
if(! $options{'3d'})
{
print(PIPE "set size ratio -1\n");
}
else
{
print(PIPE "set view equal xyz\n");
}
}
if($options{square_xy})
{
print(PIPE "set view equal xy\n");
}
for my $what_options_prefix_suffix ( ['curvestyle', 'extraoptions', '', ' ' ],
['every', 'everyoptions', 'every ', ' ' ],
['using', 'usingoptions', 'using ', ' ' ],
['legend', 'title', '', '' ])
{
my ($what, $options, $prefix, $suffix) = @$what_options_prefix_suffix;
# @{$options{$what}} is a list where consecutive pairs are (curveID, style).
if (@{$options{$what}})
{
my $n = scalar @{$options{$what}}/2;
foreach my $idx (0..$n-1)
{
addOption($options{$what}[$idx*2 ],
$options,
$prefix . $options{$what}[$idx*2 + 1] . $suffix);
}
}
}
addOption($_, 'extraoptions', 'axes x1y2 ') foreach (@{$options{x1y2}});
addOption($_, 'extraoptions', 'axes x2y1 ') foreach (@{$options{x2y1}});
addOption($_, 'extraoptions', 'axes x2y2 ') foreach (@{$options{x2y2}});
# timefmt
my $histcol;
if( $options{timefmt} )
{
print(PIPE "set timefmt '$options{timefmt}'\n");
print(PIPE "set xdata time\n");
$histcol = qq{timecolumn(2,"$options{timefmt}")};
}
else
{
$histcol = '$2';
}
# set up histograms
$options{binwidth} ||= 1; # if no binwidth given, set it to 1
print PIPE
"set boxwidth $options{binwidth}\n" .
"histbin(x) = $options{binwidth} * floor(0.5 + x/$options{binwidth})\n";
foreach my $id (@{$options{histogram}})
{
# With histograms I have 2d plots with rangesize=1. I thus give gnuplot two
# values for each point: a domain and a range. For histograms I ignore the
# domain, so I get the statistics of the 2nd column: $2
addOption($id,
'usingoptions',
'using (histbin(' . $histcol . ')):(1.0) smooth ' . $options{histstyle},
'do-not-override');
}
if(@{$options{x2y1}} || @{$options{x2y2}})
{
print PIPE "set xtics nomirror\n";
print PIPE "set x2tics\n";
# if any of the ranges are given, set the range
sendRangeCommand( "x2range", $options{x2min}, $options{x2max} );
}
if(@{$options{x1y2}} || @{$options{x2y2}})
{
print PIPE "set ytics nomirror\n";
print PIPE "set y2tics\n";
# if any of the ranges are given, set the range
sendRangeCommand( "y2range", $options{y2min}, $options{y2max} );
}
# if any of the ranges are given, set the range
sendRangeCommand( "xrange", $options{xmin}, $options{xmax} );
sendRangeCommand( "yrange", $options{ymin}, $options{ymax} );
sendRangeCommand( "zrange", $options{zmin}, $options{zmax} );
sendRangeCommand( "cbrange", $options{zmin}, $options{zmax} ) if($options{colormap});
# add the extra global options
print(PIPE "$_\n") foreach (@{$options{extracmds}});
print(PIPE "set $_\n") foreach (@{$options{set}});
print(PIPE "unset $_\n") foreach (@{$options{unset}});
# latest domain variable present in our data
my $latestX;
# column headers from vnlog
my @vnlog_headers;
if($options{vnlog})
{
require Vnlog::Parser;
require Vnlog::Util;
if ( !defined $pipe_in )
{
($pipe_in, $selector) = openNextFile();
}
my $parser = Vnlog::Parser->new();
while (defined ($_ = Vnlog::Util::get_unbuffered_line($pipe_in)))
{
if ( !$parser->parse($_) )
{
die "Error parsing vnlog: $parser->{error}; looking at line '$_'";
}
my $keys = $parser->getKeys();
if (defined $keys)
{
@vnlog_headers = @$keys;
last;
}
}
if(!@vnlog_headers)
{
die "Looked through all of the first file, and never saw a vnlog legend";
}
}
# The x-axis domain represented as a number. This is exactly the same as
# $domain[0] unless the x-axis domain uses a timefmt. Then this is the
# number of seconds since the UNIX epoch.
my $domain0_numeric;
while( defined ($_ = getNextLine()) )
{
next if /^#/o;
if( $options{stream} )
{
if(/^clear/o )
{
clearCurves();
next;
}
if(/^replot/o )
{
replot( $domain0_numeric );
next;
}
last if /^exit/o;
}
# parse the incoming data lines. The format is
# x xticlabels id0 dat0 id1 dat1 ....
# where idX is the ID of the curve that datX corresponds to
#
# - $options{domain} indicates whether the initial 'x' is given or not (if not, the line
# number is used)
#
# - $options{xticlabels} indicates whether the 'xticlabels' is given or not
#
# - $options{dataid} indicates whether idX is given or not (if not, the point order in the
# line is used)
#
# - 3d plots require $options{domain}, and dictate "x y" for the domain instead of just "x"
# The domain of the current point
my @domain;
# The x-axis tic label for this point. Used only if --xticlabels
my $xticlabel = '';
my @fields = split;
my $i_column = 0;
if($options{domain})
{
if( $options{timefmt} )
{
# no point in doing anything unless I have at least the domain and
# 1 piece of data
next if @fields < $options{timefmt_Ncols}+1;
$domain[0] = join (' ', splice( @fields, 0, $options{timefmt_Ncols}) );
$domain0_numeric = makeDomainNumeric( $domain[0] );
$i_column += $options{timefmt_Ncols};
}
elsif(!$options{'3d'})
{
# no point in doing anything unless I have at least the domain and
# 1 piece of data
next if @fields < 1+1;
$domain[0] = $domain0_numeric = shift @fields;
$i_column += 1;
}
else
{
# no point in doing anything unless I have at least the domain and
# 1 piece of data
next if @fields < 2+1;
@domain = splice(@fields, 0, 2);
$i_column += 2;
}
if( $options{monotonic} )
{
if( defined $latestX && $domain0_numeric < $latestX )
{
# the x-coordinate of the new point is in the past, so I wipe out
# all the data and start anew. Before I wipe the old data, I
# replot the old data
replot( $domain0_numeric );
clearCurves();
$latestX = undef;
}
else
{ $latestX = $domain0_numeric; }
}
}
else
{
$domain[0] = $line_number;
$domain0_numeric = $line_number;
}
if ($options{xticlabels})
{
# no point in doing anything unless I have at least the xticlabel
# and 1 piece of data
next if @fields < 1+1;
$xticlabel = '"' . (shift @fields) . '"';
$i_column += 1;
}
my $id = -1;
while(@fields)
{
if ($options{dataid})
{
$id = shift @fields;
}
elsif($options{vnlog} )
{
if( $i_column >= @vnlog_headers )
{
# Got more columns than vnlog headers. The data is probably
# bogus, but I don't want to barf at the user, so I silently
# ignore the data
last;
}
$id = $vnlog_headers[$i_column];
}
else
{
$id++;
}
my $rangesize = getRangeSize($id);
last if @fields < $rangesize;
# Done. The curve is created. I add a point to the plot.
my $curve = getCurve($id);
push @{$curve->{datastring_meta}},
{ offset_start => length( $curve->{datastring} ) +
$curve->{datastring_offset},
domain => $domain0_numeric };
$curve->{datastring} .=
join(' ',
@domain,
$xticlabel,
splice( @fields, 0, $rangesize ) ) . "\n";
$haveNewData = 1;
$i_column += $rangesize;
}
}
# finished reading in all. Plot what we have
plotStoredData() unless $options{stream} && $options{exit};
if ( defined $options{hardcopy} && !gpterminal())
{
print PIPE "set output\n";
# sleep until the plot file exists, and it is closed. Sometimes the output
# is still being written at this point. If the output filename starts with
# '|', gnuplot pipes the output to that process, instead of writing to a
# file. In that case I don't make sure the file exists, since there IS no
# file
if( $options{hardcopy} !~ /^\|/ )
{
usleep(100_000) until -e $outputfile;
usleep(100_000) until(system("fuser -s \"$outputfile\""));
}
print "Wrote output to $outputfile\n";
return;
}
# data exhausted. If we're killed now, then we should peacefully die.
if($options{stream} && !$options{exit})
{
print STDERR "Input data exhausted\n";
$SIG{INT} = undef;
}
# we persist gnuplot, so we shouldn't need this sleep. However, once
# gnuplot exits, but the persistent window sticks around, you can no
# longer interactively zoom the plot. So we still sleep
if(gpterminal())
{
print PIPE "pause mouse close\n";
close PIPE;
}
elsif(!($options{dump} || $options{exit}))
{
print PIPE "pause mouse close\n";
}
}
sub pruneOldData
{
my ($oldestx) = @_;
foreach my $curve (@curves)
{
next unless $curve->{datastring};
my $meta = $curve->{datastring_meta};
my $firstInWindow = first {$meta->[$_]{domain} >= $oldestx} 0..$#$meta;
if ( !defined $firstInWindow )
{
# everything is too old. Clear out all the data
$curve->{datastring} = '';
$curve->{datastring_meta} = [];
$curve->{datastring_offset} = 0;
}
elsif ( $firstInWindow >= 2 )
{
# clear out everything that's too old, except for one point. This point
# will be off the plot, but if we're plotting lines there will be a
# connecting line to it. Some of the line will be visible
substr( $curve->{datastring}, 0,
$meta->[$firstInWindow-1]{offset_start} - $curve->{datastring_offset},
'' );
$curve->{datastring_offset} = $meta->[$firstInWindow-1]{offset_start};
}
}
}
sub plotStoredData
{
# get the options for those curves that havse any data
my @nonemptyCurves = grep { $_->{datastring} } @curves;
my @extraopts = map {$_->{options}} @nonemptyCurves;
my $body = join('', map { "$_," } @{$options{equation}});
$body .= join(', ' , map({ "'-' $_" } @extraopts) );
$body .= join('', map { ",$_" } @{$options{'equation-above'}});
if($options{'3d'}) { print PIPE "splot $body\n"; }
else { print PIPE "plot $body\n"; }
foreach my $curve (@nonemptyCurves)
{
print PIPE $curve->{datastring};
print PIPE "e\n";
}
}
sub updateCurveOptions
{
# generates the 'options' string for a curve, based on its legend title and its other options
# These could be integrated into a single string, but that raises an issue in the no-title
# case. When no title is specified, gnuplot will still add a legend entry with an unhelpful '-'
# label. Thus I explicitly do 'notitle' for that case
my ($curve, $id) = @_;
# use the given title, unless we're generating a legend automatically. Given titles
# override autolegend
my $title;
if(defined $curve->{title} && length($curve->{title}))
{ $title = $curve->{title}; }
elsif( $options{autolegend} )
{ $title = $id; }
my $titleoption = defined $title ? "title \"$title\"" : "notitle";
my $usingoptions = $curve->{usingoptions};
if( length($usingoptions) )
{
# user specified a 'using' option. I just do that, and don't look at
# anything else
}
elsif( $options{timefmt} )
{
# with --timefmt I need an explicit 'using' specification. I specify the
# columns as 1:2:3..... I need the right number of columns (this is given
# as 1 + rangesize). I also need to start the range at the first column
# past the timefmt
my @rest = map {$_ + $options{timefmt_Ncols}} (1..getRangeSize($id));
$usingoptions = "using 1:" . join(':', @rest);
}
elsif( $options{xticlabels})
{
# if no --domain: I ignore the sequential first column, and I do
# 3:4...:xticlabels(2)
# if --domain: I do NOT ignore the domain, and I do
# 1:3:4...:xticlabels(2)
my @rest = map {$_ + 2} (1..getRangeSize($id));
if ( $options{domain})
{
$usingoptions = "using 1:" . join(':', @rest) . ":xticlabels(2)";
}
else
{
$usingoptions = "using " . join(':', @rest) . ":xticlabels(2)";
}
}
$curve->{options} = "$curve->{everyoptions} $usingoptions $titleoption $curve->{extraoptions}";
}
sub getCurve
{
# This function returns the curve corresponding to a particular label, creating a new curve if
# necessary
if(scalar @curves >= $options{maxcurves})
{
print STDERR "Tried to exceed the --maxcurves setting.\n";
print STDERR "Invoke with a higher --maxcurves limit if you really want to do this.\n";
exit -1;
}
my ($id) = @_;
if( !exists $curveFromID{$id} )
{
my $curve = {# if we have a catch-all style and no specific style, use
# the catch-all style
extraoptions => (!exists $options{curvestyle_hash}{$id} &&
exists $options{curvestyleall}) ?
"$options{curvestyleall} " : ' ',
everyoptions => (!exists $options{every_hash}{$id} &&
exists $options{everyall}) ?
"every $options{everyall} " : ' ',
usingoptions => (!exists $options{using_hash}{$id} &&
exists $options{usingall}) ?
"using $options{usingall} " : '',
title => '',
datastring => '',
datastring_meta => [],
datastring_offset => 0}; # push a curve with no data and no options
push @curves, $curve; # push a curve with no data and no options
$curveFromID{$id} = $curve;
updateCurveOptions($curve, $id);
# --xlen has a meaning if we're not plotting histograms at all or if we're
# plotting ONLY histograms. If we're doing both at the same time, there's no
# consistent way to assign meaning to xlen
if ( defined $options{xlen} &&
# have at least some histograms
@{$options{histogram}} &&
# there are more curves than histogram curves, i.e. there're some
# non-histogram curves
@curves > @{$options{histogram}} ) {
print STDERR "--xlen only makes sense when plotting ONLY histograms or ONLY NON-histograms\n";
exit -1;
}
return $curve;
}
return $curveFromID{$id};
}
sub addOption
{
my ($id, $which, $str, $do_not_override) = @_;
my $curve = getCurve($id);
if(!$do_not_override || length($curve->{$which})==0)
{
$curve->{$which} .= $str;
updateCurveOptions($curve, $id);
}
}
# remove all the curve data
sub clearCurves
{
foreach my $curve(@curves)
{
$curve->{datastring} = '';
$curve->{datastring_meta} = [];
$curve->{datastring_offset} = 0;
}
}
sub replot
{
return unless $haveNewData;
$haveNewData = undef;
return if !$options{stream};
# The logic involving domain rollover replotting due to --monotonic is a bit
# tricky. I want this:
# if( domain rolls over slowly )
# {
# should update on a timer;
# when the domain rolls over, --monotonic should force a replot
# }
# if( domain rolls over quickly )
# {
# should update when the domain rolls over,
# at most as quickly as the timer indicates
# }
my ($domain0_numeric) = @_;
my $now = [gettimeofday];
if( # If there is no replot timer at all, replot at any indication
$options{stream} < 0 ||
# if the last replot was timer-based, but this one isn't, force a replot.
# This makes sure that a replot happens for a domain rollover shortly
# after a timer replot
!$this_replot_is_from_timer && $last_replot_is_from_timer ||
# if enough time has elapsed since the last replot, it's ok to replot
tv_interval ( $last_replot_time, $now ) > 0.8*$options{stream} )
{
# ok, then. We really need to replot
if ( defined $options{xlen} )
{
# we have an --xlen, so we need to clean out the old data
pruneOldData( $domain0_numeric - $options{xlen} );
my ($xmin, $xmax) = ($domain0_numeric - $options{xlen}, $domain0_numeric);
if ( defined $options{timefmt} )
{
# if we're using a timefmt, I need to convert my xmin range from
# seconds-since-the-epoch BACK to the timefmt. Sheesh
($xmin, $xmax) = map {Time::Piece->strptime( $_, '%s' )->strftime( $options{timefmt} ) } ($xmin, $xmax);
}
# if we have any histograms, then I'm not really visualizing the domain at
# all, and I don't set the range.
sendRangeCommand( "xrange", $xmin, $xmax )
unless @{$options{histogram}};
}
plotStoredData();
# update replot state
$last_replot_time = $now;
$last_replot_is_from_timer = $this_replot_is_from_timer;
}
}
mainThread();
=head1 NAME
feedgnuplot - General purpose pipe-oriented plotting tool
=head1 SYNOPSIS
Simple plotting of piped data:
$ seq 5 | awk '{print 2*$1, $1*$1}'
2 1
4 4
6 9
8 16
10 25
$ seq 5 | awk '{print 2*$1, $1*$1}' |
feedgnuplot --lines --points --legend 0 "data 0" --title "Test plot" --y2 1
--unset grid --terminal 'dumb 80,40' --exit
Test plot
10 +-----------------------------------------------------------------+ 25
| + + + + + + + *##|
| data 0 ***A*#* |
| ** # |
9 |-+ ** ## |
| ** # |
| ** # |
| ** ## +-| 20
8 |-+ A # |
| ** # |
| ** ## |
| ** # |
| ** B |
7 |-+ ** ## |
| ** ## +-| 15
| ** # |
| ** ## |
6 |-+ *A ## |
| ** ## |
| ** # |
| ** ## +-| 10
5 |-+ ** ## |
| ** #B |
| ** ## |
| ** ## |
4 |-+ A ### |
| ** ## |
| ** ## +-| 5
| ** ## |
| ** ##B# |
3 |-+ ** #### |
| **#### |
| #### |
|## + + + + + + + |
2 +-----------------------------------------------------------------+ 0
1 1.5 2 2.5 3 3.5 4 4.5 5
Here we asked for ASCII plotting, which is useful for documentation.
Simple real-time plotting example: plot how much data is received on the wlan0
network interface in bytes/second (uses bash, awk and Linux):
$ while true; do sleep 1; cat /proc/net/dev; done |
gawk '/wlan0/ {if(b) {print $2-b; fflush()} b=$2}' |
feedgnuplot --lines --stream --xlen 10 --ylabel 'Bytes/sec' --xlabel seconds
=head1 DESCRIPTION
This is a flexible, command-line-oriented frontend to Gnuplot. It creates plots
from data coming in on STDIN or given in a filename passed on the commandline.
Various data representations are supported, as is hardcopy output and streaming
display of live data. For a tutorial and a gallery please see the guide at
L<https://github.com/dkogan/feedgnuplot/blob/master/guide/guide.org>
A simple example:
$ seq 5 | awk '{print 2*$1, $1*$1}' | feedgnuplot
You should see a plot with two curves. The C<awk> command generates some data to
plot and the C<feedgnuplot> reads it in from STDIN and generates the plot. The
C<awk> invocation is just an example; more interesting things would be plotted
in normal usage. No commandline-options are required for the most basic
plotting. Input parsing is flexible; every line need not have the same number of
points. New curves will be created as needed.
The most commonly used functionality of gnuplot is supported directly by the
script. Anything not directly supported can still be done with options such as
C<--set>, C<--cmds> C<--style>, etc. Arbitrary gnuplot commands can be passed in
with C<--cmds>. For example, to turn off the grid, you can pass in C<--cmds
'unset grid'>. Commands C<--set> and C<--unset> exists to provide nicer syntax,
so this is equivalent to passing C<--unset grid>. As many of these options as
needed can be passed in. To add arbitrary curve styles, use C<--style curveID
extrastyle>. Pass these more than once to affect more than one curve.
To apply an extra style to I<all> the curves that lack an explicit C<--style>,
pass in C<--styleall extrastyle>. In the most common case, the extra style is
C<with something>. To support this more simply, you can pass in C<--with
something> instead of C<--styleall 'with something'>. C<--styleall> and
C<--with> are mutually exclusive. Furthermore any curve-specific C<--style>
overrides the global C<--styleall> or C<--with> setting.
=head2 Data formats
By default, each value present in the incoming data represents a distinct data
point, as demonstrated in the original example above (we had 10 numbers in the
input and 10 points in the plot). If requested, the script supports more
sophisticated interpretation of input data
=head3 Domain selection
If C<--domain> is passed in, the first value on each line of input is
interpreted as the I<X>-value for the rest of the data on that line. Without
C<--domain> the I<X>-value is the line number, and the first value on a line is
a plain data point like the others. Default is C<--nodomain>. Thus the original
example above produces 2 curves, with B<1,2,3,4,5> as the I<X>-values. If we run
the same command with C<--domain>:
$ seq 5 | awk '{print 2*$1, $1*$1}' | feedgnuplot --domain
we get only 1 curve, with B<2,4,6,8,10> as the I<X>-values. As many points as
desired can appear on a single line, but all points on a line are associated
with the I<X>-value at the start of that line.
=head3 Curve indexing
We index the curves in one of 3 ways: sequentially, explicitly with a
C<--dataid> or by C<--vnlog> headers.
By default, each column represents a separate curve. The first column (after any
domain) is curve C<0>. The next one is curve C<1> and so on. This is fine unless
sparse data is to be plotted. With the C<--dataid> option, each point is
represented by 2 values: a string identifying the curve, and the value itself.
If we add C<--dataid> to the original example:
$ seq 5 | awk '{print 2*$1, $1*$1}' | feedgnuplot --dataid --autolegend
we get 5 different curves with one point in each. The first column, as produced
by C<awk>, is B<2,4,6,8,10>. These are interpreted as the IDs of the curves to
be plotted.
If we're plotting C<vnlog> data (L<https://www.github.com/dkogan/vnlog>) then we
can get the curve IDs from the vnlog header. Vnlog is a trivial data format
where lines starting with C<#> are comments and the first comment contains
column labels. If we have such data, C<feedgnuplot --vnlog> can interpret these
column labels if the C<vnlog> perl modules are available.
The C<--autolegend> option adds a legend using the given IDs to
label the curves. The IDs need not be numbers; generic strings are accepted. As
many points as desired can appear on a single line. C<--domain> can be used in
conjunction with C<--dataid> or C<--vnlog>.
=head3 Multi-value style support
Depending on how gnuplot is plotting the data, more than one value may be needed
to represent the range of a single point. Basic 2D plots have 2 numbers
representing each point: 1 domain and 1 range. But if plotting with
C<--circles>, for instance, then there's an extra range value: the radius. Many
other gnuplot styles require more data: errorbars, variable colors (C<with
points palette>), variable sizes (C<with points ps variable>), labels and so on.
The feedgnuplot tool itself does not know about all these intricacies, but they
can still be used, by specifying the specific style with C<--style>, and
specifying how many values are needed for each point with any of
C<--rangesizeall>, C<--tuplesizeall>, C<--rangesize>, C<--tuplesize>. These
options are required I<only> for styles not explicitly supported by feedgnuplot;
supported styles do the right thing automatically.
Specific example: if making a 2d plot of y error bars, the exact format can be
queried by running C<gnuplot> and invoking C<help yerrorbars>. This tells us
that there's a 3-column form: C<x y ydelta> and a 4-column form: C<x y ylow
yhigh>. With 2d plots feedgnuplot will always output the 1-value domain C<x>, so
the rangesize is 2 and 3 respectively. Thus the following are equivalent:
$ echo '1 2 0.3
2 3 0.4
3 4 0.5' | feedgnuplot --domain --rangesizeall 2 --with 'yerrorbars'
$ echo '1 2 0.3
2 3 0.4
3 4 0.5' | feedgnuplot --domain --tuplesizeall 3 --with 'yerrorbars'
$ echo '1 2 1.7 2.3
2 3 2.6 3.4
3 4 3.5 4.5' | feedgnuplot --domain --rangesizeall 3 --with 'yerrorbars'
=head3 3D data
To plot 3D data, pass in C<--3d>. C<--domain> MUST be given when plotting 3D
data to avoid domain ambiguity. If 3D data is being plotted, there are by
definition 2 domain values instead of one (I<Z> as a function of I<X> and I<Y>
instead of I<Y> as a function of I<X>). Thus the first 2 values on each line are
interpreted as the domain instead of just 1. The rest of the processing happens
the same way as before.
=head3 Time/date data
If the input data domain is a time/date, this can be interpreted with
C<--timefmt>. This option takes a single argument: the format to use to parse
the data. The format is documented in 'set timefmt' in gnuplot, although the
common flags that C<strftime> understands are generally supported. The backslash
sequences in the format are I<not> supported, so if you want a tab, put in a tab
instead of \t. Whitespace in the format I<is> supported. When this flag is
given, some other options act a little bit differently:
=over
=item
C<--xlen> and C<--binwidth> are I<integers> in seconds
=item
C<--xmin> and C<--xmax> I<must> use the format passed in to C<--timefmt>
=back
Using this option changes both the way the input is parsed I<and> the way the
x-axis tics are labelled. Gnuplot tries to be intelligent in this labelling, but
it doesn't always do what the user wants. The labelling can be controlled with
the gnuplot C<set format> command, which takes the same type of format string as
C<--timefmt>. Example:
$ sar 1 -1 |
awk '$1 ~ /..:..:../ && $8 ~/^[0-9\.]*$/ {print $1,$8; fflush()}' |
feedgnuplot --stream --domain
--lines --timefmt '%H:%M:%S'
--set 'format x "%H:%M:%S"'
This plots the 'idle' CPU consumption against time.
Note that while gnuplot supports the time/date on any axis, I<feedgnuplot>
currently supports it I<only> as the x-axis domain. This may change in the
future.
=head3 'using' expressions
We just described how feedgnuplot parses its input data. When passing this data
to gnuplot, each curve is sent independently. The domain appears in the leading
columns followed by C<--rangesize> columns to complete each row. Without
C<--domain>, feedgnuplot explicitly writes out sequential integers. gnuplot then
knows how many values it has for each point, and it knows which style we're
using, so it's able to interpret the data appropriately, and to make the correct
plot.
As an example, if gnuplot is passed 2 columns of data, and it is plotting C<with
points>, it will use column 1 for the x coordinate and column 2 for the y
coordinate. This is the default behavior, but the meaning of each column can be
controlled via a C<using> expression in gnuplot (not feedgnuplot; keep reading).
The default is sequential integers, so this example uses C<using 1:2> by
default. We can flip the meaning of the columns by passing C<using 2:1>.
Arbitrary expressions may be specified by enclosing each field in C<()>, and
using C<$> to denote each data column. So to use the 2nd column as the x
coordinate and the sum of the two columns as the y coordinate, C<using
2:($1+$2)> is passed. Furthermore, the number of columns can vary. For instance
gnuplot can read the same two columns of data, but produce a plot with the extra
column encoding the sum as the color: C<using 1:2:($1+$2) with points palette>.
Please see the gnuplot documentation for lots of detail.
That's how I<gnuplot> works. Most of the time, I<feedgnuplot> doesn't pass any
C<using> expressions at all, and gnuplot does the default thing. But if we want
to do something fancy, feedgnuplot supports C<--using curveID expression> and
C<--usingall expression>. So we can plot a parabola:
seq 100 | feedgnuplot --lines --usingall '1:($2*$2)'
This is powerful, but there are some things to keep in mind:
=over
=item
C<--using> overrides whatever C<using> expression feedgnuplot was going to pass.
feedgnuplot passes a C<using> expression only if C<--histogram> or C<--timefmt>
or C<--xticlabels> are given. So if C<--using> is given together with any of
these, the user must take care to do the right thing (whatever that means at
that time).
=item
The C<--tuplesize> controls the data passed to feedgnuplot and the data then
passed to gnuplot. It does I<not> directly control how gnuplot eventually
interprets the data: C<--using> does that. So for instance we can plot
color-coded points:
seq 10 | feedgnuplot --with 'points pt 7 palette' --usingall '1:2:2'
Here feedgnuplot read 1 column of data. It defauled to C<--tuplesize 2>, so it
passed 2 columns of data to gnuplot. gnuplot then produced 3 values for each
point, and plotted them as indicated with the C<points palette> style.
=item
You I<always> need a column of data to generate a curve. You might want to use a
C<using> expression to plot a time series I<and> its cumulative integral. The
C<using> expression can compute the integral, but you I<must> pass in the data
twice; once for each curve to plot:
seq 100 | \
awk '{print $1,$1}' | \
feedgnuplot \
--cmds 'sum=0' \
--cmds 'accum(x) = (sum=sum+x)' \
--using 1 '1:(accum($2))' \
--lines --y2 1
=back
=head2 Real-time streaming data
To plot real-time data, pass in the C<--stream [refreshperiod]> option. Data
will then be plotted as it is received. The plot will be updated every
C<refreshperiod> seconds. If the period isn't specified, a 1Hz refresh rate is
used. To refresh at specific intervals indicated by the data, set the
refreshperiod to 0 or to 'trigger'. The plot will then I<only> be refreshed when
a data line 'replot' is received. This 'replot' command works in both triggered
and timed modes, but in triggered mode, it's the only way to replot. Look in
L</"Special data commands"> for more information.
To plot only the most recent data (instead of I<all> the data), C<--xlen
windowsize> can be given. This will create an constantly-updating, scrolling
view of the recent past. C<windowsize> should be replaced by the desired length
of the domain window to plot, in domain units (passed-in values if C<--domain>
or line numbers otherwise). If the domain is a time/date via C<--timefmt>, then
C<windowsize> is and I<integer> in seconds. If we're plotting a histogram, then
C<--xlen> causes a histogram over a moving window to be computed. The subtlely
here is that with a histogram you don't actually I<see> the domain since only
the range is analyzed. But the domain is still there, and can be utilized with
C<--xlen>. With C<--xlen> we can plot I<only> histograms or I<only>
I<non>-histograms.
=head3 Special data commands
If we are reading streaming data, the input stream can contain special commands
in addition to the raw data. Feedgnuplot looks for these at the start of every
input line. If a command is detected, the rest of the line is discarded. These
commands are
=over
=item C<replot>
This command refreshes the plot right now, instead of waiting for the next
refresh time indicated by the timer. This command works in addition to the timed
refresh, as indicated by C<--stream [refreshperiod]>.
=item C<clear>
This command clears out the current data in the plot. The plotting process
continues, however, to any data following the C<clear>.
=item C<exit>
This command causes feedgnuplot to exit.
=back
=head2 Hardcopy output
The script is able to produce hardcopy output with C<--hardcopy outputfile>. The
output type can be inferred from the filename, if B<.ps>, B<.eps>, B<.pdf>,
B<.svg>, B<.png> or B<.gp> is requested. If any other file type is requested,
C<--terminal> I<must> be passed in to tell gnuplot how to make the plot. If
C<--terminal> is passed in, then the C<--hardcopy> argument only provides the
output filename.
The B<.gp> output is special. Instead of asking gnuplot to plot to a particular
terminal, writing to a B<.gp> simply dumps a self-executable gnuplot script into
the given file. This is similar to what C<--dump> does, but writes to a file,
and makes sure that the file can be self-executing.
=head2 Self-plotting data files
This script can be used to enable self-plotting data files. There are several
ways of doing this: with a shebang (#!) or with inline perl data.
=head3 Self-plotting data with a #!
A self-plotting, executable data file C<data> is formatted as
$ cat data
#!/usr/bin/feedgnuplot --lines --points
2 1
4 4
6 9
8 16
10 25
12 36
14 49
16 64
18 81
20 100
22 121
24 144
26 169
28 196
30 225
This is the shebang (#!) line followed by the data, formatted as before. The
data file can be plotted simply with
$ ./data
The caveats here are that on Linux the whole #! line is limited to 127
characters and that the full path to feedgnuplot must be given. The 127
character limit is a serious limitation, but this can likely be resolved with a
kernel patch. I have only tried on Linux 2.6.
=head3 Self-plotting data with gnuplot
Running C<feedgnuplot --hardcopy plotdata.gp ....> will create a self-executable
gnuplot script in C<plotdata.gp>
=head3 Self-plotting data with perl inline data
Perl supports storing data and code in the same file. This can also be used to
create self-plotting files:
$ cat plotdata.pl
#!/usr/bin/perl
use strict;
use warnings;
open PLOT, "| feedgnuplot --lines --points" or die "Couldn't open plotting pipe";
while( <DATA> )
{
my @xy = split;
print PLOT "@xy\n";
}
__DATA__
2 1
4 4
6 9
8 16
10 25
12 36
14 49
16 64
18 81
20 100
22 121
24 144
26 169
28 196
30 225
This is especially useful if the logged data is not in a format directly
supported by feedgnuplot. Raw data can be stored after the __DATA__ directive,
with a small perl script to manipulate the data into a useable format and send
it to the plotter.
=head1 ARGUMENTS
=over
=item
--C<[no]domain>
If enabled, the first element of each line is the domain variable. If not, the
point index is used
=item
--C<[no]dataid>
If enabled, each data point is preceded by the ID of the data set that point
corresponds to. This ID is interpreted as a string, NOT as just a number. If not
enabled, the order of the point is used.
As an example, if line 3 of the input is "0 9 1 20" then
=over
=item
C<--nodomain --nodataid> would parse the 4 numbers as points in 4 different
curves at x=3
=item
C<--domain --nodataid> would parse the 4 numbers as points in 3 different
curves at x=0. Here, 0 is the x-variable and 9,1,20 are the data values
=item
C<--nodomain --dataid> would parse the 4 numbers as points in 2 different
curves at x=3. Here 0 and 1 are the data IDs and 9 and 20 are the
data values
=item
C<--domain --dataid> would parse the 4 numbers as a single point at
x=0. Here 9 is the data ID and 1 is the data value. 20 is an extra
value, so it is ignored. If another value followed 20, we'd get another
point in curve ID 20
=back
=item
C<--vnlog>
Vnlog is a trivial data format where lines starting with C<#> are comments and
the first comment contains column labels. Some tools for working with such data
are available from the C<vnlog> project: L<https://www.github.com/dkogan/vnlog>.
With the C<vnlog> perl modules installed, we can read the vnlog column headers
with C<feedgnuplot --vnlog>. This replaces C<--dataid>, and we can do all the
normal things with these headers. For instance C<feedgnuplot --vnlog
--autolegend> will generate plot legends for each column in the vnlog, using the
vnlog column label in the legend.
=item
C<--[no]3d>
Do [not] plot in 3D. This only makes sense with C<--domain>. Each domain here is
an (x,y) tuple
=item
--C<timefmt [format]>
Interpret the X data as a time/date, parsed with the given format
=item
C<--colormap>
Show a colormapped xy plot. Requires extra data for the color. zmin/zmax can be
used to set the extents of the colors. Automatically sets the
C<--rangesize>/C<--tuplesize>.
=item
C<--stream [period]>
Plot the data as it comes in, in realtime. If period is given, replot every
period seconds. If no period is given, replot at 1Hz. If the period is given as
0 or 'trigger', replot I<only> when the incoming data dictates this. See the
L</"Real-time streaming data"> section of the man page.
=item
C<--[no]lines>
Do [not] draw lines to connect consecutive points
=item
C<--[no]points>
Do [not] draw points
=item
C<--circles>
Plot with circles. This requires a radius be specified for each point.
Automatically sets the C<--rangesize>/C<--tuplesize>. C<Not> supported for 3d
plots.
=item
C<--title xxx>
Set the title of the plot
=item
C<--legend curveID legend>
Set the label for a curve plot. Use this option multiple times for multiple
curves. With C<--dataid>, curveID is the ID. Otherwise, it's the index of the
curve, starting at 0
=item
C<--autolegend>
Use the curve IDs for the legend. Titles given with C<--legend> override these
=item
C<--xlen xxx>
When using C<--stream>, sets the size of the x-window to plot. Omit this or set
it to 0 to plot ALL the data. Does not make sense with 3d plots. Implies
C<--monotonic>. If we're plotting a histogram, then C<--xlen> causes a histogram
over a moving window to be computed. The subtlely here is that with a histogram
you don't actually I<see> the domain since only the range is analyzed. But the
domain is still there, and can be utilized with C<--xlen>. With C<--xlen> we can
plot I<only> histograms or I<only> I<non>-histograms.
=item
C<--xmin/xmax/x2min/x2max/ymin/ymax/y2min/y2max/zmin/zmax xxx>
Set the range for the given axis. These x-axis bounds are ignored in a streaming
plot. The x2/y2-axis bounds do not apply in 3d plots. The z-axis bounds apply
I<only> to 3d plots or colormaps. Note that there is no C<--xrange> to set both
sides at once or C<--xinv> to flip the axis around: anything more than the
basics supported in this option is clearly obtainable by talking to gnuplot, for
instance C<--set 'xrange [20:10]'> to set the given inverted bounds.
=item
C<--xlabel/x2label/ylabel/y2label/zlabel xxx>
Label the given axis. The x2/y2-axis labels do not apply to 3d plots while the
z-axis label applies I<only> to 3d plots.
=item
C<--x2/--y2/--x1y2/--x2y1/--x2y2 xxx>
By default data is plotted against the x1 and y1 axes (the left and bottom one
respectively). If we want a particular curve plotted against a different axis,
we can specify that with these options. You pass C<--AXIS ID> where C<AXIS>
defines the axis (C<x2> or C<y2> or C<x1y2> or C<x2y1> or C<x2y2>) and the C<ID>
is the curve ID. C<--x2> is a synonym for C<--x2y1> and C<--y2> is a synonym for
C<--x1y2>. The curve ID is an ordered 0-based index or a specific ID if
C<--dataid> or C<--vnlog>. None of these apply to 3d plots. Can be passed
multiple times for different curve IDs, multiple IDs can be passed in as a
comma-separated list. By default the curves plotted against the various axes
aren not drawn in any differentiated way: the viewer of the resulting plot has
to be told which is which via an axes label, legend, colors, etc. Prior to
version 1.25 of C<feedgnuplot> the curves plotted on the y2 axis were drawn with
a thicker line. This is no longer the case, but that behavior can be brought
back by passing something like
--y2 curveid --style curveid 'linewidth 3'
=item
C<--histogram curveID>
Set up a this specific curve to plot a histogram. The bin width is given with
the C<--binwidth> option (assumed 1.0 if omitted). If a drawing style is not
specified for this curve (C<--curvestyle>) or all curves (C<--with>,
C<--curvestyleall>) then the default histogram style is set: filled boxes with
borders. This is what the user generally wants. This works with C<--domain>
and/or C<--stream>, but in those cases the x-value is used I<only> to cull old
data because of C<--xlen> or C<--monotonic>. I.e. the domain values are I<not>
drawn in any way. Can be passed multiple times, or passed a comma- separated
list
=item
C<--xticlabels>
If given, the x-axis tic labels are not numerical, but are read from the data.
This changes the interpretation of the input data: with C<--domain>, each line
begins with C<x label ....>. Without C<--domain>, each line begins with C<label
...>. Clearly, the labels may not contain whitespace. This does I<not> affect
the tuple size. This makes sense only without C<--3d>. Please see the guide
(L<https://github.com/dkogan/feedgnuplot/blob/master/guide/guide.org>) for usage
examples.
=item
C<--binwidth width>
The width of bins when making histograms. This setting applies to ALL histograms
in the plot. Defaults to 1.0 if not given.
=item
C<--histstyle style>
Normally, histograms are generated with the 'smooth frequency' gnuplot style.
C<--histstyle> can be used to select different C<smooth> settings (see the
gnuplot C<help smooth> page for more info). Allowed values are 'frequency' (the
default), 'fnormal' (available in very recent gnuplots), 'unique', 'cumulative'
and 'cnormal'. 'fnormal' is a normalized histogram. 'unique' indicates whether a
bin has at least one item in it: instead of counting the items, it'll always
report 0 or 1. 'cumulative' is the integral of the 'frequency' histogram.
'cnormal' is like 'cumulative', but rescaled to end up at 1.0.
=item
C<--style curveID style>
Additional styles per curve. With C<--dataid>, curveID is the ID. Otherwise,
it's the index of the curve, starting at 0. curveID can be a comma-separated
list of IDs to which the given style should apply. Use this option multiple
times for multiple curves. C<--styleall> does I<not> apply to curves that have a
C<--style>.
=item
C<--curvestyle curveID>
Synonym for C<--style>
=item
C<--styleall xxx>
Additional styles for all curves that have no C<--style>. This is overridden by
any applicable C<--style>. Exclusive with C<--with>.
=item
C<--curvestyleall xxx>
Synonym for C<--styleall>
=item
C<--with xxx>
Same as C<--styleall>, but prefixed with "with". Thus
--with boxes
is equivalent to
--styleall 'with boxes'
Exclusive with C<--styleall>.
=item
C<--every curveID factor>
Decimates the input. Instead of plotting every point in the given curve, plot
one point per factor. This is useful to quickly process huge datasets. For
instance, to plot 1% of the data, pass a factor of 100.
=item
C<--everyall factor>
Decimates the input. This works exactly like C<--every>, except it applies to
I<all> the curves.
=item
C<--using curveID expression>
Specifies a C<using> expression to micromanage the plot. This is a powerful
option that allows gnuplot to interpret the input data in arbitrary ways. A
C<using> expression tells gnuplot how to map the input columns of data to tuples
expected by the plotting style. Please see the L</"'using' expressions"> section above for more detail.
=item
C<--usingall expression>
Global "using" expressions. This works exactly like C<--using>, except it
applies to I<all> the curves.
=item
C<--cmds xxx>
Additional commands to pass on to gnuplot verbatim. These could contain extra
global styles for instance. Can be passed multiple times.
=item
C<--extracmds xxx>
Synonym for C<--cmds xxx>
=item
C<--set xxx>
Additional 'set' commands to pass on to gnuplot verbatim. C<--set 'a b c'> will
result in gnuplot seeing a C<set a b c> command. Can be passed multiple times.
=item
C<--unset xxx>
Additional 'unset' commands to pass on to gnuplot verbatim. C<--unset 'a b c'>
will result in gnuplot seeing a C<unset a b c> command. Can be passed multiple
times.
=item
C<--image filename>
Overlays the data on top of a raster image given in C<filename>. This is passed
through to gnuplot via C<--equation>, and is not interpreted by C<feedgnuplot>
other than checking for existence. Usually images have their origin at the
top-left corner, while plots have it in the bottom-left corner instead. Thus if
the y-axis extents are not specified (C<--ymin>, C<--ymax>, C<--set 'yrange
...'>) this option will also flip around the y axis to make the image appear
properly. Since this option is just a passthrough to gnuplot, finer control can
be achieved by passing in C<--equation> and C<--set yrange ...> directly.
=item
C<--equation xxx>
Gnuplot can plot both data and symbolic equations. C<feedgnuplot> generally
plots data, but with this option can plot symbolic equations I<also>. This is
generally intended to augment data plots, since for equation-only plots you
don't need C<feedgnuplot>. C<--equation> can be passed multiple times for
multiple equations. The given strings are passed to gnuplot directly without
anything added or removed, so styling and such should be applied in the string.
A basic example:
seq 100 | awk '{print $1/10, $1/100}' |
feedgnuplot --with 'lines lw 3' --domain --ymax 1
--equation 'sin(x)/x' --equation 'cos(x)/x with lines lw 4'
Here I plot the incoming data (points along a line) with the given style (a line
with thickness 3), I<and> I plot two damped sinusoids on the same plot. The
sinusoids are not affected by C<feedgnuplot> styling, so their styles are set
separately, as in this example. More complicated example:
seq 360 | perl -nE '$th=$_/360 * 3.14*2; $c=cos($th); $s=sin($th); say "$c $s"' |
feedgnuplot --domain --square
--set parametric --set "trange [0:2*3.14]" --equation "sin(t),cos(t)"
Here the data I generate is points along the unit circle. I plot these as
points, and I I<also> plot a true circle as a parametric equation.
=item
C<--equation-below xxx>
Synonym for C<--equation>. These are rendered I<below> all the other data.
=item
C<--equation-above xxx>
Like C<--equation>, but is rendered I<on top> of all the other data.
=item
C<--square>
Plot data with aspect ratio 1. For 3D plots, this controls the aspect ratio for
all 3 axes
=item
C<--square-xy>
For 3D plots, set square aspect ratio for ONLY the x,y axes
=item
C<--hardcopy xxx>
If not streaming, output to a file specified here. Format inferred from
filename, unless specified by C<--terminal>. If C<--terminal> is given,
C<--hardcopy> sets I<only> the output filename.
=item
C<--terminal xxx>
String passed to 'set terminal'. No attempts are made to validate this.
C<--hardcopy> sets this to some sensible defaults if C<--hardcopy> is set to a
filename ending in C<.png>, C<.pdf>, C<.ps>, C<.eps> or C<.svg>. If any other
file type is desired, use both C<--hardcopy> and C<--terminal>
=item
C<--maxcurves N>
The maximum allowed number of curves. This is 100 by default, but can be reset
with this option. This exists purely to prevent perl from allocating all of the
system's memory when reading bogus data
=item
C<--monotonic>
If C<--domain> is given, checks to make sure that the x-coordinate in the input
data is monotonically increasing. If a given x-variable is in the past, all data
currently cached for this curve is purged. Without C<--monotonic>, all data is
kept. Does not make sense with 3d plots. No C<--monotonic> by default. The data
is replotted before being purged. This is useful in streaming plots where the
incoming data represents multiple iterations of the same process (repeated
simulations of the same period in time, for instance).
=item
C<--rangesize curveID N>
The options C<--rangesizeall> and C<--rangesize> set the number of values are
needed to represent each point being plotted (see L</"Multi-value style
support"> above). These options are I<only> needed if unknown styles are used,
with C<--styleall> or C<--with> for instance.
C<--rangesize> is used to set how many values are needed to represent the range
of a point for a particular curve. This overrides any defaults that may exist
for this curve only.
With C<--dataid>, curveID is the ID. Otherwise, it's the index of the curve,
starting at 0. curveID can be a comma-separated list of IDs to which the given
rangesize should apply.
=item
C<--tuplesize curveID N>
Very similar to C<--rangesize>, but instead of specifying the I<range> only,
this specifies the whole tuple. For instance if we're plotting circles, the
tuplesize is 3: C<x,y,radius>. In a 2D plot there's a 1-dimensional domain:
C<x>, so the rangesize is 2: C<y,radius>. This dimensionality can be given
either way.
=item
C<--rangesizeall N>
Like C<--rangesize>, but applies to I<all> the curves.
=item
C<--tuplesizeall N>
Like C<--tuplesize>, but applies to I<all> the curves.
=item
C<--dump>
Instead of printing to gnuplot, print to STDOUT. Very useful for debugging. It
is possible to send the output produced this way to gnuplot directly.
=item
C<--exit>
This controls what happens when the input data is exhausted, or when some part
of the C<feedgnuplot> pipeline is killed. This option does different things
depending on whether C<--stream> is active, so read this closely.
With interactive gnuplot terminals (qt, x11, wxt), the plot windows live in a
separate process from the main C<gnuplot> process. It is thus possible for the
main C<gnuplot> process to exit, while leaving the plot windows up (a caveat is
that such decapitated windows aren't interactive). There are 3 possible states
of the polotting pipeline:
=over
=item Alive: C<feedgnuplot>, C<gnuplot> alive, plot window process alive, no
shell prompt (shell busy with C<feedgnuplot>)
=item Half-alive: C<feedgnuplot>, C<gnuplot> dead, plot window process alive
(but non-interactive), shell prompt available
=item Dead: C<feedgnuplot>, C<gnuplot> dead, plot window process dead, shell
prompt available
=back
The possibilities are:
=over
=item No C<--stream>, all data read in
=over
=item no C<--exit> (default)
Alive. Need to Ctrl-C to get back into the shell
=item C<--exit>
Half-alive. Non-interactive prompt up, and the shell accepts new commands.
Without C<--stream> the goal is to show a plot, so a Dead state would not be
useful.
=back
=item C<--stream>, all data read in or the C<feedgnuplot> process terminated
=over
=item no C<--exit> (default)
Alive. Need to Ctrl-C to get back into the shell. This means that when making
live plots, the first Ctrl-C kills the data feeding process, but leaves the
final plot up for inspection. A second Ctrl-C kills feedgnuplot as well.
=item C<--exit>
Dead. No plot is shown, and the shell accepts new commands. With C<--stream> the
goal is to show a plot as the data comes in, which we have been doing. Now that
we're done, we can clean up everything.
=back
=back
Note that one usually invokes C<feedgnuplot> as a part of a shell pipeline:
$ write_data | feedgnuplot
If the user terminates this pipeline with ^C, then I<all> the processes in the
pipeline receive SIGINT. This normally kills C<feedgnuplot> and all its
C<gnuplot> children, and we let this happen unless C<--stream> and no C<--exit>.
If C<--stream> and no C<--exit>, then we ignore the first ^C. The data feeder
dies, and we behave as if the input data was exhausted. A second ^C kills us
also.
=item
C<--geometry>
Specifies the size, position of the plot window. This applies I<only> to the
C<x11> gnuplot terminal, and has no effect otherwise. To control the window size
for any other terminal, ask for the terminal explicitly, with the options
specifying the size. For instance C<--terminal 'qt size 1024,768'>
=item
C<--version>
Print the version and exit
=back
=head1 RECIPES
For a tutorial and a gallery please see the guide at
L<https://github.com/dkogan/feedgnuplot/blob/master/guide/guide.org>
=head2 Basic plotting of piped data
$ seq 5 | awk '{print 2*$1, $1*$1}'
2 1
4 4
6 9
8 16
10 25
$ seq 5 | awk '{print 2*$1, $1*$1}' |
feedgnuplot --lines --points --legend 0 "data 0" --title "Test plot" --y2 1
=head2 Realtime plot of network throughput
Looks at wlan0 on Linux.
$ while true; do sleep 1; cat /proc/net/dev; done |
gawk '/wlan0/ {if(b) {print $2-b; fflush()} b=$2}' |
feedgnuplot --lines --stream --xlen 10 --ylabel 'Bytes/sec' --xlabel seconds
=head2 Realtime plot of battery charge in respect to time
Uses the result of the C<acpi> command.
$ while true; do acpi; sleep 15; done |
perl -nE 'BEGIN{ $| = 1; } /([0-9]*)%/; say join(" ", time(), $1);' |
feedgnuplot --stream --ymin 0 --ymax 100 --lines --domain --xlabel 'Time' --timefmt '%s' --ylabel "Battery charge (%)"
=head2 Realtime plot of temperatures in an IBM Thinkpad
Uses C</proc/acpi/ibm/thermal>, which reports temperatures at various locations
in a Thinkpad.
$ while true; do cat /proc/acpi/ibm/thermal | awk '{$1=""; print}' ; sleep 1; done |
feedgnuplot --stream --xlen 100 --lines --autolegend --ymax 100 --ymin 20 --ylabel 'Temperature (deg C)'
=head2 Plotting a histogram of file sizes in a directory, granular to 10MB
$ ls -l | awk '{print $5/1e6}' |
feedgnuplot --histogram 0
--binwidth 10
--ymin 0 --xlabel 'File size (MB)' --ylabel Frequency
=head2 Plotting a live histogram of the ping round-trip times for the past 20 seconds
$ ping -D 8.8.8.8 |
perl -anE 'BEGIN { $| = 1; }
$F[0] =~ s/[\[\]]//g or next;
$F[7] =~ s/.*=//g or next;
say "$F[0] $F[7]"' |
feedgnuplot --stream --domain --histogram 0 --binwidth 10 \
--xlabel 'Ping round-trip time (s)' \
--ylabel Frequency --xlen 20
=head2 Plotting points on top of an existing image
This can be done with C<--image>:
$ < features_xy.data
feedgnuplot --points --domain --image "image.png"
or with C<--equation>:
$ < features_xy.data
feedgnuplot --points --domain
--equation '"image.png" binary filetype=auto flipy with rgbimage'
--set 'yrange [:] reverse'
The C<--image> invocation is a convenience wrapper for the C<--equation>
version. Finer control is available with C<--equation>.
Here an existing image is given to gnuplot verbatim, and data to plot on top of
it is interpreted by feedgnuplot as usual. C<flipy> is useful here because
usually the y axis points up, but when looking at images, this is usually
reversed: the origin is the top-left pixel.
=head1 ACKNOWLEDGEMENT
This program is originally based on the driveGnuPlots.pl script from
Thanassis Tsiodras. It is available from his site at
L<http://users.softlab.ece.ntua.gr/~ttsiod/gnuplotStreaming.html>
=head1 REPOSITORY
L<https://github.com/dkogan/feedgnuplot>
=head1 AUTHOR
Dima Kogan, C<< <dima@secretsauce.net> >>
=head1 LICENSE AND COPYRIGHT
Copyright 2011-2021 Dima Kogan.
This program is free software; you can redistribute it and/or modify it
under the terms of either: the GNU General Public License as published
by the Free Software Foundation; or the Artistic License.
See http://dev.perl.org/licenses/ for more information.
=cut