femtic/src/PARDISOSolver.cpp

286 lines
10 KiB
C++
Raw Normal View History

2021-11-09 00:06:52 +08:00
//-------------------------------------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2021 Yoshiya Usui
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//-------------------------------------------------------------------------------------------------------
#include <iostream>
#include <stdio.h>
#include "mkl_pardiso.h"
#include "mkl_types.h"
#include "mkl.h"
#include "PARDISOSolver.h"
#include "AnalysisControl.h"
#include "OutputFiles.h"
// Default constructer
PARDISOSolver::PARDISOSolver():
m_maxfct(1),
m_mnum(1),
m_mtype(PARDISOSolver::COMPLEX_AND_SYMMETRIC_MATRIX),
m_numEquations(NULL),
m_msglvl(0),
m_peakMemorySymbolicFactorization(0.0),
m_permanetMemorySymbolicFactorization(0.0),
m_memoryForNumericalFactorizationIncore(0.0),
m_memoryForNumericalFactorizationOutcore(0.0),
m_solutionStage(PARDISOSolver::MEMORY_RELEASED)
{
for( int i = 0; i < 64; ++i ){
m_pt[i] = NULL; // Initialize
m_iparm[i] = NULL; // Initialize
}
}
// Default constructer
PARDISOSolver::PARDISOSolver( const long long int matrixType ):
m_maxfct(1),
m_mnum(1),
m_mtype(matrixType),
m_numEquations(NULL),
m_msglvl(0),
m_peakMemorySymbolicFactorization(0.0),
m_permanetMemorySymbolicFactorization(0.0),
m_memoryForNumericalFactorizationIncore(0.0),
m_memoryForNumericalFactorizationOutcore(0.0),
m_solutionStage(PARDISOSolver::MEMORY_RELEASED)
{
for( int i = 0; i < 64; ++i ){
m_pt[i] = NULL; // Initialize
m_iparm[i] = NULL; // Initialize
}
}
// Destructer
PARDISOSolver::~PARDISOSolver(){
if( m_solutionStage != PARDISOSolver::MEMORY_RELEASED ){ // Release memory of PARDISO solver
releaseMemory();
}
}
// Initialize PARDISO solver
void PARDISOSolver::initialize( const std::string& oocHeaderName, const long long int imode, const long long int type ){
//if( numThreads < 0 ){
// OutputFiles::m_logFile << "Error : Total number of threads must be greater than or equals to 1 !! numThreads = " << numThreads << std::endl;
// exit(1);
//}
m_mtype = type;
if( m_solutionStage != PARDISOSolver::MEMORY_RELEASED ){ // Release memory of PARDISO solver
releaseMemory();
}
for( int i = 0; i < 64; ++i ){
m_iparm[i] = NULL; // Initialize
}
pardisoinit( m_pt, &m_mtype, m_iparm );
m_iparm[0] = 1; // Do not use default parameters
const AnalysisControl* pAnalysisControl = AnalysisControl::getInstance();
const int numThreads = pAnalysisControl->getNumThreads();
if( numThreads == 1 ){
m_iparm[1] = 2; // METIS
}else{
m_iparm[1] = 3; // Parallel version of the nested dissection algorithm
}
m_iparm[3] = 0; // Do not perform preconditioned CGS/CG iterations
m_iparm[4] = 0; // Do not use user permutation vector
m_iparm[5] = 0; // Solution vector is returned to array x
m_iparm[7] = 0; // Two steps of iterative refinements if pivots are perturbed at the numerical factorization stage
m_iparm[9] = 8; // Small pivots are perturbed with eps = 10^(-8) ( default value of symmetric indefinite matrices )
m_iparm[10] = 0; // Do not perform scaling
m_iparm[11] = 0; // Solve normally Ax=b
m_iparm[12] = 0; // Do not perform scaling symmetric weighted matching
m_iparm[17] = 0; // Do not report the number of non-zero elements in the factors
m_iparm[18] = 0; // Do not report Mflops that are necessary to factor the matrix A
m_iparm[20] = 1; // 1x1 and 2x2 Bunch and Kaufman pivoting during the factorization stage
m_iparm[23] = 0; // Use 1x1 and 2x2 Bunch and Kaufman pivoting during the factorization stage
m_iparm[24] = 0; // Use the parallel algorithm for solve step
m_iparm[26] = 0; // Do not check the sparse matrix representation
m_iparm[27] = 0; // Double precision
m_iparm[30] = 0; // Do not assume sparse right-hand sides and sparse solution as sparce
m_iparm[34] = 1; // Zero-based indexing
//m_iparm[59] = 0; // In-core PARDISO
m_iparm[59] = imode; // PARDISO mode
//// Specifies the number of threads to use
//mkl_set_num_threads( numThreads );
#ifdef _INTEL_LT_21
// Set the header name of out-of-core files
const PARDISO_ENV_PARAM param = PARDISO_OOC_FILE_NAME;
pardiso_setenv( m_pt, &param, oocHeaderName.c_str() );
#endif
m_solutionStage = PARDISOSolver::INITIALIZED;
}
// Analysis phase of PARDISO solver
void PARDISOSolver::analysis( const long long int nEq, long long int* rowIndex, long long int* columns ){
if( m_solutionStage < PARDISOSolver::INITIALIZED ){
OutputFiles::m_logFile << "Error : Forward solver has not been initialized yet." << std::endl;
exit(1);
}else if( m_solutionStage == PARDISOSolver::ANALYZED ){
OutputFiles::m_logFile << "Warning : Analysis phase has already been performed." << std::endl;
}
m_numEquations = nEq;
long long int phase = 11;
double ddum;
long long int idum;
long long int error;
long long int nrhs = 1;
pardiso_64( m_pt, &m_maxfct, &m_mnum, &m_mtype, &phase, &m_numEquations, &ddum, rowIndex, columns,
&idum, &nrhs, m_iparm, &m_msglvl, &ddum, &ddum, &error);
if (error != 0)
{
// OutputFiles::m_logFile << "Error : Error during analysis phase of forward solver. : error = " << error << std::endl;
//exit(1);
outputErrorMessages( error );
}
m_peakMemorySymbolicFactorization = m_iparm[14];
m_permanetMemorySymbolicFactorization = m_iparm[15];
m_memoryForNumericalFactorizationIncore = m_iparm[16];
m_memoryForNumericalFactorizationOutcore = m_iparm[62];
m_solutionStage = PARDISOSolver::ANALYZED;
}
// Release memory of PARDISO solver
void PARDISOSolver::releaseMemory(){
//if( m_solutionStage == PARDISO::MEMORY_RELEASED ){
// OutputFiles::m_logFile << "Warning : Memory has already been released." << std::endl;
// return;
//}
if( m_solutionStage < PARDISOSolver::ANALYZED ){
return;
}
long long int phase = -1;
long long int idum;
double ddum;
long long int error;
long long int nrhs = 1;
pardiso_64( m_pt, &m_maxfct, &m_mnum, &m_mtype, &phase, &m_numEquations, &ddum, &idum, &idum,
&idum, &nrhs, m_iparm, &m_msglvl, &ddum, &ddum, &error);
if (error != 0)
{
// OutputFiles::m_logFile << "Error : Error during memory release phase of forward solver. : error = " << error << std::endl;
//exit(1);
outputErrorMessages( error );
}
m_solutionStage = PARDISOSolver::MEMORY_RELEASED;
}
// Get memory required by PARDISO solver
void PARDISOSolver::writeMemoryRequired() const{
if( m_solutionStage < PARDISOSolver::ANALYZED ){
OutputFiles::m_logFile << "Error : Memory required by forward solver is obtained at the analysis phase : stage = " << m_solutionStage << std::endl;
exit(1);
}
OutputFiles::m_logFile << "#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
OutputFiles::m_logFile << "# Total peak memory required during the analysis and symbolic factorization phase : " << m_peakMemorySymbolicFactorization << " [KByte]" << std::endl;
OutputFiles::m_logFile << "# Permanent memory required from the analysis phase to the solve phases : " << m_permanetMemorySymbolicFactorization << " [KByte]" << std::endl;
OutputFiles::m_logFile << "# Total memory consumed by in-core forward solver for internal float point arrays : " << m_memoryForNumericalFactorizationIncore << " [KByte]" << std::endl;
OutputFiles::m_logFile << "# Minimum memory consumed by out-core forward solver for internal float point arrays : " << m_memoryForNumericalFactorizationOutcore << " [KByte]" << std::endl;
OutputFiles::m_logFile << "#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
}
// Get stage of PARDISO solver
int PARDISOSolver::getSolutionStage() const{
return m_solutionStage;
}
// Set stage of PARDISOSolver solver
void PARDISOSolver::setSolutionStage( const int stage ){
if( stage < MEMORY_RELEASED || stage > SOLVED ){
OutputFiles::m_logFile << "Error : Stage number is wrong. : stage = " << stage << std::endl;
exit(1);
}
m_solutionStage = stage;
}
// Output error messages
void PARDISOSolver::outputErrorMessages( const int ier ) const{
switch (ier){
case -1:
OutputFiles::m_logFile << "Error : Some parameters passed to forward solver may be wrong." << std::endl;
break;
case -2:
OutputFiles::m_logFile << "Error : Insufficient memory for forward solver." << std::endl;
break;
case -3:
OutputFiles::m_logFile << "Error : Some problems occur in reordering." << std::endl;
break;
case -4:
OutputFiles::m_logFile << "Error : Zero pivot is found." << std::endl;
break;
case -5:
OutputFiles::m_logFile << "Error : Internal error of forward solver." << std::endl;
break;
case -6:
OutputFiles::m_logFile << "Error : Reordering failed." << std::endl;
break;
case -7:
OutputFiles::m_logFile << "Error : Matrix is singular." << std::endl;
break;
case -8:
OutputFiles::m_logFile << "Error : 32-bit integer overflow problem." << std::endl;
break;
case -9:
OutputFiles::m_logFile << "Error : Insufficient memory for out-of-core mode of forward solver." << std::endl;
break;
case -10:
OutputFiles::m_logFile << "Error : Fail to open out-of-core file of forward solver." << std::endl;
break;
case -11:
OutputFiles::m_logFile << "Error : Fail to read/write out-of-core file of forward solver." << std::endl;
break;
default:
OutputFiles::m_logFile << "Error : Unknown error of forward solver. ier = " << ier << std::endl;
break;
}
exit(1);
}