2021-11-09 01:06:52 +09:00
//-------------------------------------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2021 Yoshiya Usui
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//-------------------------------------------------------------------------------------------------------
# include <stddef.h> // For null pointer
# include <stdlib.h> // For exit
# include <iostream>
# include "DoubleSparseSquareMatrix.h"
# include "OutputFiles.h"
# include <assert.h>
2025-02-06 17:26:47 +09:00
# include <math.h>
# ifdef _DEBUG_WRITE_FOR_BOTTOM_RESISTIVITY
# ifdef _LINUX
# include <sys/time.h>
# include <sys/resource.h>
# endif
# endif
2021-11-09 01:06:52 +09:00
//Default Constructer
DoubleSparseSquareMatrix : : DoubleSparseSquareMatrix ( ) :
DoubleSparseMatrix ( )
{ }
// Constructer
DoubleSparseSquareMatrix : : DoubleSparseSquareMatrix ( const int nEq , const int nRhs ) :
DoubleSparseMatrix ( nEq , nEq , nRhs )
{
//if( nEq <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of equation specified is less than or equals to zero. : nEq = " << nEq << std::endl;
// exit(1);
//}
//
//if( nRhs <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of right-hand side vectors is specified to be less than or equals to zero. : nRhs = " << nRhs << std::endl;
// exit(1);
//}
assert ( nEq > 0 ) ;
assert ( nRhs > 0 ) ;
}
// Destructer
DoubleSparseSquareMatrix : : ~ DoubleSparseSquareMatrix ( ) {
if ( m_pardisoSolver . getSolutionStage ( ) > PARDISOSolver : : MEMORY_RELEASED ) {
m_pardisoSolver . releaseMemory ( ) ;
}
}
// Set number of rows and columns
void DoubleSparseSquareMatrix : : setNumRowsAndColumns ( const int nrows , const int ncols ) {
//if( nrows != ncols ){
// OutputFiles::m_logFile << "Error : Number of rows and the one of columns are different for square matrix. : nrows = " << nrows << ", ncols = " << ncols << std::endl;
// exit(1);
//}
assert ( nrows = = ncols ) ;
DoubleSparseMatrix : : setNumRowsAndColumns ( nrows , ncols ) ;
}
// Set Degree of equation
// Note : This function must be called BEFORE the matrix is converted into CRS format
void DoubleSparseSquareMatrix : : setDegreeOfEquation ( const int nEq ) {
//if( nEq <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of equation specified is less than or equals to zero. : nEq = " << nEq << std::endl;
// exit(1);
//}
assert ( nEq > 0 ) ;
setNumRowsAndColumns ( nEq , nEq ) ;
}
//Initialize matrix and right-hand side vectors
void DoubleSparseSquareMatrix : : initializeMatrixAndRhsVectors ( const int nEq , const int nRhs ) {
//if( nEq <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of equation is specified to be less than or equals to zero. : nEq = " << nEq << std::endl;
// exit(1);
//}
//
//if( nRhs <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of right-hand side vectors is specified to be less than or equals to zero. : nRhs = " << nRhs << std::endl;
// exit(1);
//}
assert ( nEq > 0 ) ;
assert ( nRhs > 0 ) ;
releaseMemoryMatrixSolver ( ) ;
DoubleSparseMatrix : : initializeMatrixAndRhsVectors ( nEq , nEq , nRhs ) ;
}
//Anaysis phase of matrix solver
void DoubleSparseSquareMatrix : : analysisPhaseMatrixSolver ( ) {
assert ( m_hasConvertedToCRSFormat ) ;
m_pardisoSolver . analysis ( m_numRows , m_rowIndex , m_columns ) ;
}
//Numerical factorization phase of matrix solver
void DoubleSparseSquareMatrix : : factorizationPhaseMatrixSolver ( ) {
assert ( m_hasConvertedToCRSFormat ) ;
m_pardisoSolver . numericalFactorization ( m_rowIndex , m_columns , m_values ) ;
}
//Solve phase of matrix solver with a specified number of right-hand side
2023-03-01 06:12:56 +09:00
void DoubleSparseSquareMatrix : : solvePhaseMatrixSolver ( double * solution , const long long iRhsStart , const int nRhs ) {
2021-11-09 01:06:52 +09:00
assert ( m_hasConvertedToCRSFormat ) ;
2023-03-01 06:12:56 +09:00
const long long index = static_cast < long long > ( m_numRows ) * iRhsStart ;
2021-11-09 01:06:52 +09:00
m_pardisoSolver . solve ( m_rowIndex , m_columns , m_values , nRhs , & m_rightHandSideVector [ index ] , solution ) ;
}
//Solve phase of matrix solver
void DoubleSparseSquareMatrix : : solvePhaseMatrixSolver ( double * solution ) {
assert ( m_hasConvertedToCRSFormat ) ;
m_pardisoSolver . solve ( m_rowIndex , m_columns , m_values , m_numRightHandSideVectors , m_rightHandSideVector , solution ) ;
}
//Solve phase of matrix solver
void DoubleSparseSquareMatrix : : solvePhaseMatrixSolver ( const int nrhs , double * rhs , double * solution ) {
assert ( m_hasConvertedToCRSFormat ) ;
m_pardisoSolver . solve ( m_rowIndex , m_columns , m_values , nrhs , rhs , solution ) ;
}
2025-02-06 17:26:47 +09:00
//Solve phase of matrix solver by the conjugate gradient method with the point Jacobi preconditioner
//@note Matrix should be symmetric
void DoubleSparseSquareMatrix : : solvePhaseMatrixSolverByPCGPointJacobi ( const int nrhs , double * rhs , double * solution ) const {
assert ( m_hasConvertedToCRSFormat ) ;
const int maxIterationNumber = m_numRows ;
const double eps = 1.0e-20 ;
double * invDiagonals = new double [ m_numRows ] ;
double * workP = new double [ m_numRows ] ;
double * workR = new double [ m_numRows ] ; // Residuals
double * workQ = new double [ m_numRows ] ;
double * workX = new double [ m_numRows ] ; // Solution vector
double * workZ = new double [ m_numRows ] ;
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
for ( int j = m_rowIndex [ irow ] ; j < m_rowIndex [ irow + 1 ] ; + + j )
{
if ( irow = = m_columns [ j ] )
{
invDiagonals [ irow ] = 1.0 / m_values [ j ] ;
}
}
}
for ( int irhs = 0 ; irhs < nrhs ; + + irhs )
{
// Initial solution is a zero vector
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
workX [ irow ] = 0.0 ;
}
// [r0] = [b] - [A][x0]
double normOfRhsVector ( 0.0 ) ;
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
const long long int index = static_cast < long long int > ( irow ) + static_cast < long long int > ( irhs ) * static_cast < long long int > ( m_numRows ) ;
normOfRhsVector + = rhs [ index ] * rhs [ index ] ;
workR [ irow ] = rhs [ index ] ;
}
int iter = 0 ;
double rhoPre ( 0.0 ) ;
for ( ; iter < maxIterationNumber ; + + iter )
{
// [z] = [M]^-1[r]
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
workZ [ irow ] = invDiagonals [ irow ] * workR [ irow ] ;
}
// rho = [r]T[z]
double rho ( 0.0 ) ;
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
rho + = workR [ irow ] * workZ [ irow ] ;
}
if ( iter = = 0 )
{
// [p0] - [z0]
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
workP [ irow ] = workZ [ irow ] ;
}
}
else
{
// [p] = [z] + beta*[p]
const double beta = rho / rhoPre ;
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
workP [ irow ] = workZ [ irow ] + beta * workP [ irow ] ;
}
}
// [q] = [A][p]
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
workQ [ irow ] = 0.0 ;
for ( int j = m_rowIndex [ irow ] ; j < m_rowIndex [ irow + 1 ] ; + + j )
{
workQ [ irow ] + = m_values [ j ] * workP [ m_columns [ j ] ] ;
}
}
// alpha = rho / [p]T[q]
double pq ( 0.0 ) ;
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
pq + = workP [ irow ] * workQ [ irow ] ;
}
const double alpha = rho / pq ;
// [x] = [x] + alpha * [p]
// [r] = [r] - alpha * [q]
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
workX [ irow ] + = alpha * workP [ irow ] ;
workR [ irow ] - = alpha * workQ [ irow ] ;
}
// Check convergence
double normOfResidualVector ( 0.0 ) ;
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
normOfResidualVector + = workR [ irow ] * workR [ irow ] ;
}
if ( sqrt ( normOfResidualVector / normOfRhsVector ) < eps )
{
break ;
}
rhoPre = rho ;
}
if ( iter > = maxIterationNumber ) {
OutputFiles : : m_logFile < < " Error : PCG solver is not converged !! " < < std : : endl ;
exit ( 1 ) ;
}
else {
OutputFiles : : m_logFile < < " # PCG solver is converged after " < < iter < < " iterations. " < < std : : endl ;
}
for ( int irow = 0 ; irow < m_numRows ; + + irow )
{
const long long int index = static_cast < long long int > ( irow ) + static_cast < long long int > ( irhs ) * static_cast < long long int > ( m_numRows ) ;
solution [ index ] = workX [ irow ] ;
}
}
# ifdef _DEBUG_WRITE_FOR_BOTTOM_RESISTIVITY
# ifdef _LINUX
{
struct rusage r ;
if ( getrusage ( RUSAGE_SELF , & r ) ! = 0 ) {
/*Failure*/
}
OutputFiles : : m_logFile < < " maxrss= " < < r . ru_maxrss < < std : : endl ;
}
# endif
# endif
delete [ ] invDiagonals ;
delete [ ] workP ;
delete [ ] workR ;
delete [ ] workQ ;
delete [ ] workX ;
delete [ ] workZ ;
}
2021-11-09 01:06:52 +09:00
//Release memory of matrix solver
void DoubleSparseSquareMatrix : : releaseMemoryMatrixSolver ( ) {
if ( m_pardisoSolver . getSolutionStage ( ) > PARDISOSolver : : MEMORY_RELEASED ) {
m_pardisoSolver . releaseMemory ( ) ;
}
}
//Get memory required by matrix solver
void DoubleSparseSquareMatrix : : writeMemoryRequiredByMatrixSolver ( ) {
m_pardisoSolver . writeMemoryRequired ( ) ;
}
//Release memory
void DoubleSparseSquareMatrix : : releaseMemory ( ) {
if ( m_pardisoSolver . getSolutionStage ( ) > PARDISOSolver : : MEMORY_RELEASED ) {
m_pardisoSolver . releaseMemory ( ) ;
}
DoubleSparseMatrix : : releaseMemory ( ) ;
}
// Get Degree of equation
int DoubleSparseSquareMatrix : : getDegreeOfEquation ( ) const {
return m_numRows ;
}
//Copy constructer
DoubleSparseSquareMatrix : : DoubleSparseSquareMatrix ( const DoubleSparseSquareMatrix & matrix ) {
std : : cerr < < " Error : Copy constructer of the class DoubleSparseSquareMatrix is not implemented. " < < std : : endl ;
exit ( 1 ) ;
}
// Assignment operator
DoubleSparseSquareMatrix & DoubleSparseSquareMatrix : : operator = ( const DoubleSparseSquareMatrix & rhs ) {
std : : cerr < < " Error : Assignment operator of the class DoubleSparseSquareMatrix is not implemented. " < < std : : endl ;
exit ( 1 ) ;
}