//------------------------------------------------------------------------------------------------------- // The MIT License (MIT) // // Copyright (c) 2021 Yoshiya Usui // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //------------------------------------------------------------------------------------------------------- #ifndef DBLDEF_FORWARD_3D_BRICK_ELEMENT_0TH_ORDER #define DBLDEF_FORWARD_3D_BRICK_ELEMENT_0TH_ORDER #include "Forward2DSquareElement.h" #include "Forward3D.h" #include "MeshDataBrickElement.h" #include // Class of 3D forward calculation by using 0th order brick element class Forward3DBrickElement0thOrder : public Forward3D { public: // Constructer Forward3DBrickElement0thOrder(); // Destructer virtual ~Forward3DBrickElement0thOrder(); // Run 3D forward calculation by using brick element virtual void forwardCalculation( const double freq, const int iPol ); // Calculate X component electric field values for 0th order edge-based elements virtual std::complex calcValueElectricFieldXDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate Y component electric field values for 0th order edge-based elements virtual std::complex calcValueElectricFieldYDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate Z component electric field values for 0th order edge-based elements virtual std::complex calcValueElectricFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate Z component of rotated electric field virtual std::complex calcValueRotatedElectricFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate X component of electric field only from the edges on the Earth's surface virtual std::complex calcValueElectricFieldXDirectionFromEdgesOnEarthSurface( const int iElem, const int iFace, const double uCoord, const double vCoord ) const; // Calculate Y component of electric field only from the edges on the Earth's surface virtual std::complex calcValueElectricFieldYDirectionFromEdgesOnEarthSurface( const int iElem, const int iFace, const double uCoord, const double vCoord ) const; // Calculate tangential electric field directed to X from all edges of owner element virtual std::complex calcValueElectricFieldTangentialXFromAllEdges( const int iElem, const int iFace, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate tangential electric field directed to Y from all edges of owner element virtual std::complex calcValueElectricFieldTangentialYFromAllEdges( const int iElem, const int iFace, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate tangential electric field directed to X virtual std::complex calcValueElectricFieldTangentialX( const int iElem, const int iFace, const double uCoord, const double vCoord ) const; // Calculate tangential electric field directed to Y virtual std::complex calcValueElectricFieldTangentialY( const int iElem, const int iFace, const double uCoord, const double vCoord ) const; // Calculate X component magnetic field values for 0th order edge-based elements virtual std::complex calcValueMagneticFieldXDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate Y component magnetic field values for 0th order edge-based elements virtual std::complex calcValueMagneticFieldYDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate Z component magnetic field values for 0th order edge-based elements virtual std::complex calcValueMagneticFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const; // Calculate difference of voltage virtual std::complex calcVoltageDifference( const int nElem, const int* elememtsIncludingDipole, const CommonParameters::locationXY* localCoordinateValuesStartPoint, const CommonParameters::locationXY* localCoordinateValuesEndPoint ) const; // Calculate difference of voltage for tetra element virtual std::complex calcVoltageDifference( const int nElem, const int* const elememtsIncludingDipole, const int* const facesIncludingDipole, const CommonParameters::AreaCoords* const areaCoordValStartPoint, const CommonParameters::AreaCoords* const areaCoordValEndPoint ) const; // Calculate interpolator vector of X component of electric field virtual void calcInterpolatorVectorOfElectricFieldXDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of Y component of electric field virtual void calcInterpolatorVectorOfElectricFieldYDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of Z component of electric field virtual void calcInterpolatorVectorOfElectricFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of Z component of rotated electric field virtual void calcInterpolatorVectorOfRotatedElectricFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of X component of electric field only from the edges on the Earth's surface virtual void calcInterpolatorVectorOfElectricFieldXDirectionFromEdgesOnEarthSurface( const int iElem, const int iFace, const double uCoord, const double vCoord, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of Y component of electric field only from the edges on the Earth's surface virtual void calcInterpolatorVectorOfElectricFieldYDirectionFromEdgesOnEarthSurface( const int iElem, const int iFace, const double uCoord, const double vCoord, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of tangential electric field directed to X from all edges virtual void calcInterpolatorVectorOfElectricFieldTangentialXFromAllEdges( const int iElem, const int iFace, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of tangential electric field directed to Y from all edges virtual void calcInterpolatorVectorOfElectricFieldTangentialYFromAllEdges( const int iElem, const int iFace, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of tangential electric field directed to X virtual void calcInterpolatorVectorOfElectricFieldTangentialX( const int iElem, const int iFace, const double uCoord, const double vCoord, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of tangential electric field directed to Y virtual void calcInterpolatorVectorOfElectricFieldTangentialY( const int iElem, const int iFace, const double uCoord, const double vCoord, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of X component of magnetic field virtual void calcInterpolatorVectorOfMagneticFieldXDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of Y component of magnetic field virtual void calcInterpolatorVectorOfMagneticFieldYDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of Z component of magnetic field virtual void calcInterpolatorVectorOfMagneticFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex& factor = std::complex(1.0,0.0) ); // Calculate interpolator vector of difference of voltage virtual void calcInterpolatorVectorOfVoltageDifference( const int nElem, const int* elememtsIncludingDipole, const CommonParameters::locationXY* localCoordinateValuesStartPoint, const CommonParameters::locationXY* localCoordinateValuesEndPoint, const int irhs ); // Calculate interpolator vector of difference of voltage virtual void calcInterpolatorVectorOfVoltageDifference( const int nElem, const int* elememtsIncludingDipole, const int* const facesIncludingDipole, const CommonParameters::AreaCoords* const areaCoordValStartPoint, const CommonParameters::AreaCoords* const areaCoordValEndPoint, const int irhs ); // Set non-zero strucuture of matrix for forward calculation virtual void setNonZeroStrucuture( ComplexSparseSquareSymmetricMatrix& matrix ); // Set non-zero values of matrix and right-hande side vector for forward calculation virtual void setNonZeroValues( ComplexSparseSquareSymmetricMatrix& matrix ); //----- DO NOT DELETE FOR FUTURE USE >>>>> //// Set non-zero strucuture of matrix for calculating derivatives //virtual void setNonZeroStrucuture( ComplexSparseSquareSymmetricMatrix& matrix, const int blkID, std::set& nonZeroRowsAndCols ); //// Set non-zero values of matrix and right-hande side vector for calculating derivatives //virtual void setNonZeroValues( ComplexSparseSquareSymmetricMatrix& matrix, const int blkID ); //----- DO NOT DELETE FOR FUTURE USE >>>>> // Calculate vector x of the reciprocity algorithm of Rodi (1976) virtual void calVectorXOfReciprocityAlgorithm( const std::complex* const vecIn, const int blkID, std::complex* const vecOut, std::vector& nonZeroRows ); // Call function inputMeshData of the class MeshData virtual void callInputMeshData(); // Get pointer to the class MeshData virtual const MeshData* getPointerToMeshData() const; // Get pointer to the class MeshDataBrickElement const MeshDataBrickElement* getPointerToMeshDataBrickElement() const; private: //const static std::vector m_iVecDummy; const static int DIRICHLET_BOUNDARY_NONZERO_VALUE = -1;// This must be the same as the ones of other functions !! const static int DIRICHLET_BOUNDARY_ZERO_VALUE = -2;// This must be the same as the ones of other functions !! const static int m_numGauss = 2; const static int m_numIntegralPoints = m_numGauss * m_numGauss * m_numGauss; double m_xLocal[m_numIntegralPoints]; double m_yLocal[m_numIntegralPoints]; double m_zLocal[m_numIntegralPoints]; double m_weights3D[m_numIntegralPoints]; MeshDataBrickElement m_MeshDataBrickElement; // Copy constructer Forward3DBrickElement0thOrder(const Forward3DBrickElement0thOrder& rhs); // Copy assignment operator Forward3DBrickElement0thOrder& operator=(const Forward3DBrickElement0thOrder& rhs); // Class of 2D forward calculation using square elements //Forward2DSquareElement* m_Fwd2DSquareElement[4][2]; Forward2DSquareElement* m_Fwd2DSquareElement[4]; // Get X component of shape function for 0th order edge-based elements inline double getShapeFuncX( const double xLocal, const double yLocal, const double zLocal, const int num ) const; // Get Y component of shape function for 0th order edge-based elements inline double getShapeFuncY( const double xLocal, const double yLocal, const double zLocal, const int num ) const; // Get Z component of shape function for 0th order edge-based elements inline double getShapeFuncZ( const double xLocal, const double yLocal, const double zLocal, const int num ) const; // Get X component of shape function rotated for 0th order edge-based elements inline double getShapeFuncRotatedX( const double xLocal, const double yLocal, const double zLocal, const double lx, const double ly, const double lz, const int num ) const; // Get Y component of shape function rotated for 0th order edge-based elements inline double getShapeFuncRotatedY( const double xLocal, const double yLocal, const double zLocal, const double lx, const double ly, const double lz, const int num ) const; // Get Z component of shape function rotated for 0th order edge-based elements inline double getShapeFuncRotatedZ( const double xLocal, const double yLocal, const double zLocal, const double lx, const double ly, const double lz, const int num ) const; // Calculate array converting local IDs to global ones void calcArrayConvertLocalID2Global(); // Calculate array converting global IDs to the ones after degeneration void calcArrayConvertIDsGlobal2AfterDegenerated(); // Calculate array converting global edge IDs non-zero electric field values specified to the edges void calcArrayConvertIDGlobal2NonZeroValues(); // Renumber global node IDs after degeneration by coordinate values void renumberNodes(); //// Calculate flag specifing whether rotation direction of integral route is positive or not //bool doesRotationDirectionPlus( const CommonParameters::locationXY& startPoint, const CommonParameters::locationXY& endPoint, // bool& integralXCompFirst ) const; // Calculate flag specifing whether integral X component first bool doesIntegralXCompFirst( const CommonParameters::locationXY& startPoint, const CommonParameters::locationXY& endPoint, bool& rotationDirectionPlus ) const; // Output results of forward calculation to VTK file virtual void outputResultToVTK() const; // Output results of forward calculation to binary file virtual void outputResultToBinary( const int iFreq, const int iPol ) const; //// Get total number of element //virtual int getNumElemTotal() const; }; #endif