mirror of
https://github.com/yoshiya-usui/femtic.git
synced 2025-07-19 22:41:13 +08:00
247 lines
15 KiB
C++
247 lines
15 KiB
C++
//-------------------------------------------------------------------------------------------------------
|
|
// The MIT License (MIT)
|
|
//
|
|
// Copyright (c) 2021 Yoshiya Usui
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
//-------------------------------------------------------------------------------------------------------
|
|
#ifndef DBLDEF_FORWARD_3D_BRICK_ELEMENT_0TH_ORDER
|
|
#define DBLDEF_FORWARD_3D_BRICK_ELEMENT_0TH_ORDER
|
|
|
|
#include "Forward2DSquareElement.h"
|
|
#include "Forward3D.h"
|
|
#include "MeshDataBrickElement.h"
|
|
#include <set>
|
|
|
|
// Class of 3D forward calculation by using 0th order brick element
|
|
class Forward3DBrickElement0thOrder : public Forward3D {
|
|
|
|
public:
|
|
// Constructer
|
|
Forward3DBrickElement0thOrder();
|
|
|
|
// Destructer
|
|
virtual ~Forward3DBrickElement0thOrder();
|
|
|
|
// Run 3D forward calculation by using brick element
|
|
virtual void forwardCalculation( const double freq, const int iPol );
|
|
|
|
// Calculate X component electric field values for 0th order edge-based elements
|
|
virtual std::complex<double> calcValueElectricFieldXDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate Y component electric field values for 0th order edge-based elements
|
|
virtual std::complex<double> calcValueElectricFieldYDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate Z component electric field values for 0th order edge-based elements
|
|
virtual std::complex<double> calcValueElectricFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate Z component of rotated electric field
|
|
virtual std::complex<double> calcValueRotatedElectricFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate X component of electric field only from the edges on the Earth's surface
|
|
virtual std::complex<double> calcValueElectricFieldXDirectionFromEdgesOnEarthSurface( const int iElem, const int iFace, const double uCoord, const double vCoord ) const;
|
|
|
|
// Calculate Y component of electric field only from the edges on the Earth's surface
|
|
virtual std::complex<double> calcValueElectricFieldYDirectionFromEdgesOnEarthSurface( const int iElem, const int iFace, const double uCoord, const double vCoord ) const;
|
|
|
|
// Calculate tangential electric field directed to X from all edges of owner element
|
|
virtual std::complex<double> calcValueElectricFieldTangentialXFromAllEdges( const int iElem, const int iFace, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate tangential electric field directed to Y from all edges of owner element
|
|
virtual std::complex<double> calcValueElectricFieldTangentialYFromAllEdges( const int iElem, const int iFace, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate tangential electric field directed to X
|
|
virtual std::complex<double> calcValueElectricFieldTangentialX( const int iElem, const int iFace, const double uCoord, const double vCoord ) const;
|
|
|
|
// Calculate tangential electric field directed to Y
|
|
virtual std::complex<double> calcValueElectricFieldTangentialY( const int iElem, const int iFace, const double uCoord, const double vCoord ) const;
|
|
|
|
// Calculate X component magnetic field values for 0th order edge-based elements
|
|
virtual std::complex<double> calcValueMagneticFieldXDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate Y component magnetic field values for 0th order edge-based elements
|
|
virtual std::complex<double> calcValueMagneticFieldYDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate Z component magnetic field values for 0th order edge-based elements
|
|
virtual std::complex<double> calcValueMagneticFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal ) const;
|
|
|
|
// Calculate difference of voltage
|
|
virtual std::complex<double> calcVoltageDifference( const int nElem, const int* elememtsIncludingDipole,
|
|
const CommonParameters::locationXY* localCoordinateValuesStartPoint, const CommonParameters::locationXY* localCoordinateValuesEndPoint ) const;
|
|
|
|
// Calculate difference of voltage for tetra element
|
|
virtual std::complex<double> calcVoltageDifference( const int nElem, const int* const elememtsIncludingDipole, const int* const facesIncludingDipole,
|
|
const CommonParameters::AreaCoords* const areaCoordValStartPoint, const CommonParameters::AreaCoords* const areaCoordValEndPoint ) const;
|
|
|
|
// Calculate interpolator vector of X component of electric field
|
|
virtual void calcInterpolatorVectorOfElectricFieldXDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of Y component of electric field
|
|
virtual void calcInterpolatorVectorOfElectricFieldYDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of Z component of electric field
|
|
virtual void calcInterpolatorVectorOfElectricFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of Z component of rotated electric field
|
|
virtual void calcInterpolatorVectorOfRotatedElectricFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of X component of electric field only from the edges on the Earth's surface
|
|
virtual void calcInterpolatorVectorOfElectricFieldXDirectionFromEdgesOnEarthSurface( const int iElem, const int iFace, const double uCoord, const double vCoord, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of Y component of electric field only from the edges on the Earth's surface
|
|
virtual void calcInterpolatorVectorOfElectricFieldYDirectionFromEdgesOnEarthSurface( const int iElem, const int iFace, const double uCoord, const double vCoord, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of tangential electric field directed to X from all edges
|
|
virtual void calcInterpolatorVectorOfElectricFieldTangentialXFromAllEdges( const int iElem, const int iFace, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of tangential electric field directed to Y from all edges
|
|
virtual void calcInterpolatorVectorOfElectricFieldTangentialYFromAllEdges( const int iElem, const int iFace, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of tangential electric field directed to X
|
|
virtual void calcInterpolatorVectorOfElectricFieldTangentialX( const int iElem, const int iFace, const double uCoord, const double vCoord, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of tangential electric field directed to Y
|
|
virtual void calcInterpolatorVectorOfElectricFieldTangentialY( const int iElem, const int iFace, const double uCoord, const double vCoord, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of X component of magnetic field
|
|
virtual void calcInterpolatorVectorOfMagneticFieldXDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of Y component of magnetic field
|
|
virtual void calcInterpolatorVectorOfMagneticFieldYDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of Z component of magnetic field
|
|
virtual void calcInterpolatorVectorOfMagneticFieldZDirection( const int iElem, const double xLocal, const double yLocal, const double zLocal, const int irhs, const std::complex<double>& factor = std::complex<double>(1.0,0.0) );
|
|
|
|
// Calculate interpolator vector of difference of voltage
|
|
virtual void calcInterpolatorVectorOfVoltageDifference( const int nElem, const int* elememtsIncludingDipole, const CommonParameters::locationXY* localCoordinateValuesStartPoint, const CommonParameters::locationXY* localCoordinateValuesEndPoint, const int irhs );
|
|
|
|
// Calculate interpolator vector of difference of voltage
|
|
virtual void calcInterpolatorVectorOfVoltageDifference( const int nElem, const int* elememtsIncludingDipole, const int* const facesIncludingDipole,
|
|
const CommonParameters::AreaCoords* const areaCoordValStartPoint, const CommonParameters::AreaCoords* const areaCoordValEndPoint, const int irhs );
|
|
|
|
// Set non-zero strucuture of matrix for forward calculation
|
|
virtual void setNonZeroStrucuture( ComplexSparseSquareSymmetricMatrix& matrix );
|
|
|
|
// Set non-zero values of matrix and right-hande side vector for forward calculation
|
|
virtual void setNonZeroValues( ComplexSparseSquareSymmetricMatrix& matrix );
|
|
|
|
//----- DO NOT DELETE FOR FUTURE USE >>>>>
|
|
//// Set non-zero strucuture of matrix for calculating derivatives
|
|
//virtual void setNonZeroStrucuture( ComplexSparseSquareSymmetricMatrix& matrix, const int blkID, std::set<int>& nonZeroRowsAndCols );
|
|
|
|
//// Set non-zero values of matrix and right-hande side vector for calculating derivatives
|
|
//virtual void setNonZeroValues( ComplexSparseSquareSymmetricMatrix& matrix, const int blkID );
|
|
//----- DO NOT DELETE FOR FUTURE USE >>>>>
|
|
|
|
// Calculate vector x of the reciprocity algorithm of Rodi (1976)
|
|
virtual void calVectorXOfReciprocityAlgorithm( const std::complex<double>* const vecIn, const int blkID, std::complex<double>* const vecOut, std::vector<int>& nonZeroRows );
|
|
|
|
// Call function inputMeshData of the class MeshData
|
|
virtual void callInputMeshData();
|
|
|
|
// Get pointer to the class MeshData
|
|
virtual const MeshData* getPointerToMeshData() const;
|
|
|
|
// Get pointer to the class MeshDataBrickElement
|
|
const MeshDataBrickElement* getPointerToMeshDataBrickElement() const;
|
|
|
|
private:
|
|
//const static std::vector<int> m_iVecDummy;
|
|
|
|
const static int DIRICHLET_BOUNDARY_NONZERO_VALUE = -1;// This must be the same as the ones of other functions !!
|
|
|
|
const static int DIRICHLET_BOUNDARY_ZERO_VALUE = -2;// This must be the same as the ones of other functions !!
|
|
|
|
const static int m_numGauss = 2;
|
|
|
|
const static int m_numIntegralPoints = m_numGauss * m_numGauss * m_numGauss;
|
|
|
|
double m_xLocal[m_numIntegralPoints];
|
|
|
|
double m_yLocal[m_numIntegralPoints];
|
|
|
|
double m_zLocal[m_numIntegralPoints];
|
|
|
|
double m_weights3D[m_numIntegralPoints];
|
|
|
|
MeshDataBrickElement m_MeshDataBrickElement;
|
|
|
|
// Copy constructer
|
|
Forward3DBrickElement0thOrder(const Forward3DBrickElement0thOrder& rhs);
|
|
|
|
// Copy assignment operator
|
|
Forward3DBrickElement0thOrder& operator=(const Forward3DBrickElement0thOrder& rhs);
|
|
|
|
// Class of 2D forward calculation using square elements
|
|
//Forward2DSquareElement* m_Fwd2DSquareElement[4][2];
|
|
Forward2DSquareElement* m_Fwd2DSquareElement[4];
|
|
|
|
// Get X component of shape function for 0th order edge-based elements
|
|
inline double getShapeFuncX( const double xLocal, const double yLocal, const double zLocal, const int num ) const;
|
|
|
|
// Get Y component of shape function for 0th order edge-based elements
|
|
inline double getShapeFuncY( const double xLocal, const double yLocal, const double zLocal, const int num ) const;
|
|
|
|
// Get Z component of shape function for 0th order edge-based elements
|
|
inline double getShapeFuncZ( const double xLocal, const double yLocal, const double zLocal, const int num ) const;
|
|
|
|
// Get X component of shape function rotated for 0th order edge-based elements
|
|
inline double getShapeFuncRotatedX( const double xLocal, const double yLocal, const double zLocal,
|
|
const double lx, const double ly, const double lz, const int num ) const;
|
|
|
|
// Get Y component of shape function rotated for 0th order edge-based elements
|
|
inline double getShapeFuncRotatedY( const double xLocal, const double yLocal, const double zLocal,
|
|
const double lx, const double ly, const double lz, const int num ) const;
|
|
|
|
// Get Z component of shape function rotated for 0th order edge-based elements
|
|
inline double getShapeFuncRotatedZ( const double xLocal, const double yLocal, const double zLocal,
|
|
const double lx, const double ly, const double lz, const int num ) const;
|
|
|
|
// Calculate array converting local IDs to global ones
|
|
void calcArrayConvertLocalID2Global();
|
|
|
|
// Calculate array converting global IDs to the ones after degeneration
|
|
void calcArrayConvertIDsGlobal2AfterDegenerated();
|
|
|
|
// Calculate array converting global edge IDs non-zero electric field values specified to the edges
|
|
void calcArrayConvertIDGlobal2NonZeroValues();
|
|
|
|
// Renumber global node IDs after degeneration by coordinate values
|
|
void renumberNodes();
|
|
|
|
//// Calculate flag specifing whether rotation direction of integral route is positive or not
|
|
//bool doesRotationDirectionPlus( const CommonParameters::locationXY& startPoint, const CommonParameters::locationXY& endPoint,
|
|
// bool& integralXCompFirst ) const;
|
|
// Calculate flag specifing whether integral X component first
|
|
bool doesIntegralXCompFirst( const CommonParameters::locationXY& startPoint, const CommonParameters::locationXY& endPoint,
|
|
bool& rotationDirectionPlus ) const;
|
|
|
|
// Output results of forward calculation to VTK file
|
|
virtual void outputResultToVTK() const;
|
|
|
|
// Output results of forward calculation to binary file
|
|
virtual void outputResultToBinary( const int iFreq, const int iPol ) const;
|
|
|
|
//// Get total number of element
|
|
//virtual int getNumElemTotal() const;
|
|
|
|
};
|
|
|
|
#endif
|