Files
femtic/src/DoubleSparseSquareMatrix.cpp
2025-02-06 17:26:47 +09:00

325 lines
10 KiB
C++

//-------------------------------------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2021 Yoshiya Usui
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//-------------------------------------------------------------------------------------------------------
#include <stddef.h> // For null pointer
#include <stdlib.h> // For exit
#include <iostream>
#include "DoubleSparseSquareMatrix.h"
#include "OutputFiles.h"
#include <assert.h>
#include <math.h>
#ifdef _DEBUG_WRITE_FOR_BOTTOM_RESISTIVITY
#ifdef _LINUX
#include <sys/time.h>
#include <sys/resource.h>
#endif
#endif
//Default Constructer
DoubleSparseSquareMatrix::DoubleSparseSquareMatrix():
DoubleSparseMatrix()
{}
// Constructer
DoubleSparseSquareMatrix::DoubleSparseSquareMatrix( const int nEq, const int nRhs ):
DoubleSparseMatrix( nEq, nEq, nRhs )
{
//if( nEq <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of equation specified is less than or equals to zero. : nEq = " << nEq << std::endl;
// exit(1);
//}
//
//if( nRhs <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of right-hand side vectors is specified to be less than or equals to zero. : nRhs = " << nRhs << std::endl;
// exit(1);
//}
assert( nEq > 0 );
assert( nRhs > 0 );
}
// Destructer
DoubleSparseSquareMatrix::~DoubleSparseSquareMatrix(){
if( m_pardisoSolver.getSolutionStage() > PARDISOSolver::MEMORY_RELEASED ){
m_pardisoSolver.releaseMemory();
}
}
// Set number of rows and columns
void DoubleSparseSquareMatrix::setNumRowsAndColumns( const int nrows, const int ncols ){
//if( nrows != ncols ){
// OutputFiles::m_logFile << "Error : Number of rows and the one of columns are different for square matrix. : nrows = " << nrows << ", ncols = " << ncols << std::endl;
// exit(1);
//}
assert( nrows == ncols );
DoubleSparseMatrix::setNumRowsAndColumns( nrows, ncols );
}
// Set Degree of equation
// Note : This function must be called BEFORE the matrix is converted into CRS format
void DoubleSparseSquareMatrix::setDegreeOfEquation( const int nEq ){
//if( nEq <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of equation specified is less than or equals to zero. : nEq = " << nEq << std::endl;
// exit(1);
//}
assert( nEq > 0 );
setNumRowsAndColumns( nEq, nEq );
}
//Initialize matrix and right-hand side vectors
void DoubleSparseSquareMatrix::initializeMatrixAndRhsVectors( const int nEq, const int nRhs ){
//if( nEq <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of equation is specified to be less than or equals to zero. : nEq = " << nEq << std::endl;
// exit(1);
//}
//
//if( nRhs <= 0 ){
// OutputFiles::m_logFile << "Error : Total number of right-hand side vectors is specified to be less than or equals to zero. : nRhs = " << nRhs << std::endl;
// exit(1);
//}
assert( nEq > 0 );
assert( nRhs > 0 );
releaseMemoryMatrixSolver();
DoubleSparseMatrix::initializeMatrixAndRhsVectors( nEq, nEq, nRhs );
}
//Anaysis phase of matrix solver
void DoubleSparseSquareMatrix::analysisPhaseMatrixSolver(){
assert( m_hasConvertedToCRSFormat );
m_pardisoSolver.analysis( m_numRows, m_rowIndex, m_columns );
}
//Numerical factorization phase of matrix solver
void DoubleSparseSquareMatrix::factorizationPhaseMatrixSolver(){
assert( m_hasConvertedToCRSFormat );
m_pardisoSolver.numericalFactorization( m_rowIndex, m_columns, m_values );
}
//Solve phase of matrix solver with a specified number of right-hand side
void DoubleSparseSquareMatrix::solvePhaseMatrixSolver( double* solution, const long long iRhsStart ,const int nRhs ){
assert( m_hasConvertedToCRSFormat );
const long long index = static_cast<long long>(m_numRows) * iRhsStart;
m_pardisoSolver.solve( m_rowIndex, m_columns, m_values, nRhs, &m_rightHandSideVector[index], solution );
}
//Solve phase of matrix solver
void DoubleSparseSquareMatrix::solvePhaseMatrixSolver( double* solution ){
assert( m_hasConvertedToCRSFormat );
m_pardisoSolver.solve( m_rowIndex, m_columns, m_values, m_numRightHandSideVectors, m_rightHandSideVector, solution );
}
//Solve phase of matrix solver
void DoubleSparseSquareMatrix::solvePhaseMatrixSolver( const int nrhs, double* rhs, double* solution ){
assert( m_hasConvertedToCRSFormat );
m_pardisoSolver.solve( m_rowIndex, m_columns, m_values, nrhs, rhs, solution );
}
//Solve phase of matrix solver by the conjugate gradient method with the point Jacobi preconditioner
//@note Matrix should be symmetric
void DoubleSparseSquareMatrix::solvePhaseMatrixSolverByPCGPointJacobi(const int nrhs, double* rhs, double* solution) const{
assert(m_hasConvertedToCRSFormat);
const int maxIterationNumber = m_numRows;
const double eps = 1.0e-20;
double* invDiagonals = new double[m_numRows];
double* workP = new double[m_numRows];
double* workR = new double[m_numRows];// Residuals
double* workQ = new double[m_numRows];
double* workX = new double[m_numRows];// Solution vector
double* workZ = new double[m_numRows];
for (int irow = 0; irow < m_numRows; ++irow)
{
for (int j = m_rowIndex[irow]; j < m_rowIndex[irow + 1]; ++j)
{
if (irow == m_columns[j])
{
invDiagonals[irow] = 1.0 / m_values[j];
}
}
}
for (int irhs = 0; irhs < nrhs; ++irhs)
{
// Initial solution is a zero vector
for (int irow = 0; irow < m_numRows; ++irow)
{
workX[irow] = 0.0;
}
// [r0] = [b] - [A][x0]
double normOfRhsVector(0.0);
for (int irow = 0; irow < m_numRows; ++irow)
{
const long long int index = static_cast<long long int>(irow) + static_cast<long long int>(irhs) * static_cast<long long int>(m_numRows);
normOfRhsVector += rhs[index] * rhs[index];
workR[irow] = rhs[index];
}
int iter = 0;
double rhoPre(0.0);
for (; iter < maxIterationNumber; ++iter)
{
// [z] = [M]^-1[r]
for (int irow = 0; irow < m_numRows; ++irow)
{
workZ[irow] = invDiagonals[irow] * workR[irow];
}
// rho = [r]T[z]
double rho(0.0);
for (int irow = 0; irow < m_numRows; ++irow)
{
rho += workR[irow] * workZ[irow];
}
if (iter == 0)
{
// [p0] - [z0]
for (int irow = 0; irow < m_numRows; ++irow)
{
workP[irow] = workZ[irow];
}
}
else
{
// [p] = [z] + beta*[p]
const double beta = rho / rhoPre;
for (int irow = 0; irow < m_numRows; ++irow)
{
workP[irow] = workZ[irow] + beta * workP[irow];
}
}
// [q] = [A][p]
for (int irow = 0; irow < m_numRows; ++irow)
{
workQ[irow] = 0.0;
for (int j = m_rowIndex[irow]; j < m_rowIndex[irow + 1]; ++j)
{
workQ[irow] += m_values[j] * workP[m_columns[j]];
}
}
// alpha = rho / [p]T[q]
double pq(0.0);
for (int irow = 0; irow < m_numRows; ++irow)
{
pq += workP[irow] * workQ[irow];
}
const double alpha = rho / pq;
// [x] = [x] + alpha * [p]
// [r] = [r] - alpha * [q]
for (int irow = 0; irow < m_numRows; ++irow)
{
workX[irow] += alpha * workP[irow];
workR[irow] -= alpha * workQ[irow];
}
// Check convergence
double normOfResidualVector(0.0);
for (int irow = 0; irow < m_numRows; ++irow)
{
normOfResidualVector += workR[irow] * workR[irow];
}
if( sqrt(normOfResidualVector/ normOfRhsVector) < eps )
{
break;
}
rhoPre = rho;
}
if (iter >= maxIterationNumber) {
OutputFiles::m_logFile << "Error : PCG solver is not converged !!" << std::endl;
exit(1);
}
else {
OutputFiles::m_logFile << "# PCG solver is converged after " << iter << " iterations." << std::endl;
}
for (int irow = 0; irow < m_numRows; ++irow)
{
const long long int index = static_cast<long long int>(irow) + static_cast<long long int>(irhs) * static_cast<long long int>(m_numRows);
solution[index] = workX[irow];
}
}
#ifdef _DEBUG_WRITE_FOR_BOTTOM_RESISTIVITY
#ifdef _LINUX
{
struct rusage r;
if (getrusage(RUSAGE_SELF, &r) != 0) {
/*Failure*/
}
OutputFiles::m_logFile << "maxrss= " << r.ru_maxrss << std::endl;
}
#endif
#endif
delete[] invDiagonals;
delete[] workP;
delete[] workR;
delete[] workQ;
delete[] workX;
delete[] workZ;
}
//Release memory of matrix solver
void DoubleSparseSquareMatrix::releaseMemoryMatrixSolver(){
if( m_pardisoSolver.getSolutionStage() > PARDISOSolver::MEMORY_RELEASED ){
m_pardisoSolver.releaseMemory();
}
}
//Get memory required by matrix solver
void DoubleSparseSquareMatrix::writeMemoryRequiredByMatrixSolver(){
m_pardisoSolver.writeMemoryRequired();
}
//Release memory
void DoubleSparseSquareMatrix::releaseMemory(){
if( m_pardisoSolver.getSolutionStage() > PARDISOSolver::MEMORY_RELEASED ){
m_pardisoSolver.releaseMemory();
}
DoubleSparseMatrix::releaseMemory();
}
// Get Degree of equation
int DoubleSparseSquareMatrix::getDegreeOfEquation() const{
return m_numRows;
}
//Copy constructer
DoubleSparseSquareMatrix::DoubleSparseSquareMatrix(const DoubleSparseSquareMatrix &matrix ){
std::cerr << "Error : Copy constructer of the class DoubleSparseSquareMatrix is not implemented." << std::endl;
exit(1);
}
// Assignment operator
DoubleSparseSquareMatrix& DoubleSparseSquareMatrix::operator=(const DoubleSparseSquareMatrix& rhs){
std::cerr << "Error : Assignment operator of the class DoubleSparseSquareMatrix is not implemented." << std::endl;
exit(1);
}