#include "iostream" #include "cmath" #include "vector" using namespace std; struct point_2d { double x, y; }; struct source : point_2d { double rad; double slow; }; struct grid_point : point_2d { int tag = 0; //0 = far away, 1 = close, 2 = active double time = 1e+30; double syn_time = 1e+30; //synthetic direct arrive time (only for error test) double slow; grid_point* neighbor[4] = {NULL,NULL,NULL,NULL}; //up down left right }; typedef vector grid_point_array; typedef vector ptr_grid_point_array; void update_heap(ptr_grid_point_array& a, int i, int n) { int iMax = i, iLeft = 2 * i + 1, iRight = 2 * (i + 1); if (iLeft < n && a[iMax]->time < a[iLeft]->time) { iMax = iLeft; } if (iRight < n && a[iMax]->time < a[iRight]->time) { iMax = iRight; } if (iMax != i) { grid_point* tmp = a[iMax]; a[iMax] = a[i]; a[i] = tmp; update_heap(a, iMax, n); } return; } void heap_sort(ptr_grid_point_array& a, int n) { for (int i = (n - 1) / 2; i >= 0; i--) { update_heap(a, i, n); } for (int i = n - 1; i > 0; --i) { grid_point* tmp = a[i]; a[i] = a[0]; a[0] = tmp; update_heap(a, 0, i); } return; } double dis_point_2d(point_2d a, point_2d b) { return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)); } void local_update(grid_point* point_ptr, double delta_h) { //solve a quadratic equation to get the trial time /* double a = 0, b = 0, c = -1.0 * pow(delta_h,2) * pow(point_ptr->slow,2); for (int i = 0; i < 4; i++) { if (point_ptr->neighbor[i] != NULL && point_ptr->neighbor[i]->tag == 2) { a += 1.0; b += -2.0*point_ptr->neighbor[i]->time; c += pow(point_ptr->neighbor[i]->time,2); } } */ // a second order upwind difference scheme double a = 0, b = 0, c = -4.0 * pow(delta_h,2) * pow(point_ptr->slow,2); for (int i = 0; i < 4; i++) { if (point_ptr->neighbor[i] != NULL && point_ptr->neighbor[i]->tag == 2) { a += 4.0; b += -8.0*point_ptr->neighbor[i]->time; c += 4.0*pow(point_ptr->neighbor[i]->time,2); if (point_ptr->neighbor[i]->neighbor[i] != NULL && point_ptr->neighbor[i]->neighbor[i]->tag == 2) { a += 5.0; b += -16.0*point_ptr->neighbor[i]->time + 6.0*point_ptr->neighbor[i]->neighbor[i]->time; c += 12.0*pow(point_ptr->neighbor[i]->time,2) - 8.0*point_ptr->neighbor[i]->time*point_ptr->neighbor[i]->neighbor[i]->time + pow(point_ptr->neighbor[i]->neighbor[i]->time,2); } } } double delta = b*b - 4.0*a*c; //in a upwind scheme, delta is always bigger than zero point_ptr->time = min(point_ptr->time, 0.5*(sqrt(delta) - b)/a); return; } void abnormal_slowness(grid_point_array& grid_recall, double ab_slow,double xmin, double xmax, double ymin, double ymax) { for (int i = 0; i < grid_recall.size(); i++) { if (grid_recall[i].x >= xmin && grid_recall[i].x <= xmax && grid_recall[i].y >= ymin && grid_recall[i].y <= ymax) { grid_recall[i].slow = ab_slow; } } return; } int main(int argc, char const *argv[]) { //set grid parameters int xnum = 201; int ynum = 101; double xmin = 0; double ymin = 0; double dh = 5; //set source parameters source init_source; init_source.x = 50; init_source.y = 250; init_source.rad = 25; init_source.slow = 1.0; //initialize grid grid_point_array grid_2d; grid_2d.resize(xnum*ynum); //down-left corner to up-right corner for (int i = 0; i < ynum; i++) { for (int j = 0; j < xnum; j++) { grid_2d[i*xnum+j].x = xmin + dh*j; grid_2d[i*xnum+j].y = ymin + dh*i; grid_2d[i*xnum+j].slow = init_source.slow; if (i <= ynum-2) grid_2d[i*xnum+j].neighbor[0] = &grid_2d[(i+1)*xnum+j]; //up if (i >= 1) grid_2d[i*xnum+j].neighbor[1] = &grid_2d[(i-1)*xnum+j]; //down if (j >= 1) grid_2d[i*xnum+j].neighbor[2] = &grid_2d[i*xnum+j-1]; //left if (j <= xnum-2) grid_2d[i*xnum+j].neighbor[3] = &grid_2d[i*xnum+j+1]; //right //calculate synthetic direct arrive time grid_2d[i*xnum+j].syn_time = dis_point_2d(grid_2d[i*xnum+j], init_source) * init_source.slow; } } //add abnormal slowness here //abnormal_slowness(grid_2d,2.0,250,500,0,500); //abnormal_slowness(grid_2d,4.0,800,1000,0,500); //abnormal_slowness(grid_2d,1e+30,200,250,0,250); //abnormal_slowness(grid_2d,1e+30,500,550,250,500); //abnormal_slowness(grid_2d,1e+30,800,850,0,250); ptr_grid_point_array close_node_ptr; //initialize source nodes and close nodes; for (int i = 0; i < xnum*ynum; i++) { if (dis_point_2d(grid_2d[i],init_source) <= init_source.rad) { grid_2d[i].tag = 2; grid_2d[i].time = dis_point_2d(grid_2d[i],init_source) * init_source.slow; } } for (int i = 0; i < xnum*ynum; i++) { if (grid_2d[i].tag == 2) { for (int j = 0; j < 4; j++) { if (grid_2d[i].neighbor[j] != NULL && grid_2d[i].neighbor[j]->tag == 0) { grid_2d[i].neighbor[j]->tag = 1; close_node_ptr.push_back(grid_2d[i].neighbor[j]); } } } } //calculate trial time for all close nodes for (int i = 0; i < close_node_ptr.size(); i++) { local_update(close_node_ptr[i], dh); } //marching forward and updating the close nodes set while (!close_node_ptr.empty()) { // heap sort close nodes pointers to put the node first that has smallest time heap_sort(close_node_ptr,close_node_ptr.size()); //change the first node's tag to 2 and update it's neighbor's time if it is not active close_node_ptr[0]->tag = 2; for (int i = 0; i < 4; i++) { if (close_node_ptr[0]->neighbor[i] != NULL && close_node_ptr[0]->neighbor[i]->tag == 0) { close_node_ptr[0]->neighbor[i]->tag = 1; local_update(close_node_ptr[0]->neighbor[i], dh); close_node_ptr.push_back(close_node_ptr[0]->neighbor[i]); } else if (close_node_ptr[0]->neighbor[i] != NULL && close_node_ptr[0]->neighbor[i]->tag == 1) { local_update(close_node_ptr[0]->neighbor[i], dh); } } close_node_ptr.erase(close_node_ptr.begin()); } for (int i = 0; i < xnum*ynum; i++) { if (grid_2d[i].time > 1e+10) { cout << grid_2d[i].x << " " << grid_2d[i].y << " " << grid_2d[i].tag << " " << grid_2d[i].syn_time << " nan " << grid_2d[i].time - grid_2d[i].syn_time << endl; } else cout << grid_2d[i].x << " " << grid_2d[i].y << " " << grid_2d[i].tag << " " << grid_2d[i].syn_time << " " << grid_2d[i].time << " " << grid_2d[i].time - grid_2d[i].syn_time << endl; } return 0; }