119 lines
5.3 KiB
C
119 lines
5.3 KiB
C
|
/********************************************************
|
||
|
* ██████╗ ██████╗████████╗██╗
|
||
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
||
|
* ██║ ███╗██║ ██║ ██║
|
||
|
* ██║ ██║██║ ██║ ██║
|
||
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
||
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
||
|
* Geophysical Computational Tools & Library (GCTL)
|
||
|
*
|
||
|
* Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn)
|
||
|
*
|
||
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
||
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation, either version 2
|
||
|
* of the License, or (at your option) any later version. You should have
|
||
|
* received a copy of the GNU Lesser General Public License along with this
|
||
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*
|
||
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
||
|
* the GCTL, please consider the option to obtain a commercial license for a
|
||
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
||
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
||
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
||
|
* to include some description of your company and the realm of its activities.
|
||
|
* Also add information on how to contact you by electronic and paper mail.
|
||
|
******************************************************/
|
||
|
|
||
|
#ifndef _GCTL_SINKHORN_H
|
||
|
#define _GCTL_SINKHORN_H
|
||
|
|
||
|
#include "../core/array.h"
|
||
|
#include "algorithm_func.h"
|
||
|
#include "interpolate.h"
|
||
|
|
||
|
namespace gctl
|
||
|
{
|
||
|
/**
|
||
|
* @brief Sinkhorn 算法计算两个一维分布之间的最优传输计划
|
||
|
*
|
||
|
*/
|
||
|
class sinkhorn1d
|
||
|
{
|
||
|
public:
|
||
|
sinkhorn1d();
|
||
|
sinkhorn1d(const array<double> &tar, double tmin, double tmax, double eta = 10, double eps = 1e-10, norm_type_e nt = L2);
|
||
|
virtual ~sinkhorn1d();
|
||
|
|
||
|
void init(const array<double> &tar, double tmin, double tmax, double eta = 10, double eps = 1e-10, norm_type_e nt = L2);
|
||
|
void make_plan_from(const array<double> &inp, double imin, double imax, bool verbose = false);
|
||
|
|
||
|
double get_distance();
|
||
|
double get_distance(array<double> &grad);
|
||
|
void sampling_to_target(array<double> &in_out);
|
||
|
|
||
|
matrix<double> &get_plan();
|
||
|
void save_plan(std::string filename);
|
||
|
|
||
|
private:
|
||
|
double L1_distance(double x, double y);
|
||
|
double L2_distance(double x, double y);
|
||
|
|
||
|
private:
|
||
|
norm_type_e nt_; // 传输代价的测度标准
|
||
|
double eta_, eps_; // Sinkhorn算法的正则化参数 Sinkhorn算法的迭代终止精度 这里我们使用均方根误差计算迭代精度
|
||
|
int xnum_, ynum_; // x与y分布的数量
|
||
|
double xmin_, dx_, xmax_, ymin_, dy_, ymax_; // x和y分布的参数
|
||
|
array<double> px_; // 待转换概率分布
|
||
|
array<double> px_grad_; // px分布相对于x的导数
|
||
|
array<double> px_maxi_; // P_中每一列的最大值
|
||
|
array<double> py_; // 目标概率分布
|
||
|
array<double> u_, v_; // 迭代向量
|
||
|
matrix<double> K_; // 转化核矩阵
|
||
|
matrix<double> P_; // 转换矩阵
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* @brief Sinkhorn 算法计算两个二维分布之间的最优传输计划
|
||
|
*
|
||
|
*/
|
||
|
class sinkhorn2d
|
||
|
{
|
||
|
public:
|
||
|
sinkhorn2d();
|
||
|
sinkhorn2d(const matrix<double> &tar, double xmin, double xmax, double ymin, double ymax,
|
||
|
double eta = 10, double eps = 1e-10, norm_type_e nt = L2);
|
||
|
virtual ~sinkhorn2d();
|
||
|
|
||
|
void init(const matrix<double> &tar, double xmin, double xmax, double ymin, double ymax,
|
||
|
double eta = 10, double eps = 1e-10, norm_type_e nt = L2);
|
||
|
void make_plan_from(const matrix<double> &inp, double xmin, double xmax, double ymin, double ymax,
|
||
|
bool verbose = false);
|
||
|
|
||
|
double get_distance();
|
||
|
void sampling_to_target(array<double> &inx, array<double> &iny);
|
||
|
|
||
|
matrix<double> &get_plan();
|
||
|
void save_plan(std::string filename, int idx = -1, int idy = -1);
|
||
|
|
||
|
private:
|
||
|
double L1_distance(double x, double y, double x2, double y2);
|
||
|
double L2_distance(double x, double y, double x2, double y2);
|
||
|
|
||
|
private:
|
||
|
norm_type_e nt_; // 传输代价的测度标准
|
||
|
double eta_, eps_; // Sinkhorn算法的正则化参数 Sinkhorn算法的迭代终止精度 这里我们使用均方根误差计算迭代精度
|
||
|
int t_xnum_, t_ynum_, i_xnum_, i_ynum_, px_num_, py_num_; // x与y分布的数量
|
||
|
double t_xmin_, t_dx_, t_xmax_, t_ymin_, t_dy_, t_ymax_; // x和y分布的参数
|
||
|
double i_xmin_, i_dx_, i_xmax_, i_ymin_, i_dy_, i_ymax_;
|
||
|
array<double> px_; // 待转换概率分布
|
||
|
array<double> py_; // 目标概率分布
|
||
|
array<double> u_, v_; // 迭代向量
|
||
|
matrix<double> K_; // 转化核矩阵
|
||
|
matrix<double> P_; // 转换矩阵
|
||
|
matrix<double> RP_; // 整理后的转换矩阵
|
||
|
matrix<double> rp_maxi_; // RP_中每一快的最大值
|
||
|
};
|
||
|
}
|
||
|
|
||
|
#endif // _GCTL_SINKHORN_H
|