/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "variogram.h" #include "cmath" bool gctl::variogram_model::valid() { if (nugget <= 0.0 || sill <= 0.0 || range <= 0.0) return false; if (sill <= nugget) return false; return true; } double gctl::spherical_variogram(const double &d, const variogram_model &vm) { if (d > vm.range) return vm.sill; return vm.nugget + ((vm.sill-vm.nugget) * ((3.0*d)/(2.0*vm.range) - (d*d*d)/(2.0*vm.range*vm.range*vm.range))); } double gctl::exponential_variogram(const double &d, const variogram_model &vm) { return vm.nugget + ((vm.sill-vm.nugget) * (1.0-exp((-d/vm.range)))); } double gctl::gaussian_variogram(const double &d, const variogram_model &vm) { double e = d/vm.range; return vm.nugget + ((vm.sill-vm.nugget) * (1.0-exp(-1.0*e*e))); } double gctl::wave_variogram(const double &d, const variogram_model &vm) { if (d == 0.0) return vm.nugget; double e = d/vm.range; return vm.nugget + ((vm.sill-vm.nugget) * (1.0-sin(e)/e)); } double gctl::rational_quadratic_variogram(const double &d, const variogram_model &vm) { double e = (d*d)/(vm.range*vm.range); return vm.nugget + ((vm.sill-vm.nugget) * (e/(1.0+e))); } double gctl::circular_variogram(const double &d, const variogram_model &vm) { if(d > vm.range) return vm.sill; double e = d/vm.range; double p = 2.0/GCTL_Pi; double r = sqrt(1.0-e*e); return vm.nugget + ((vm.sill-vm.nugget) * (1-p*acos(e)+p*e*r)); } double gctl::linear_variogram(const double &d, const variogram_model &vm) { if (d >= vm.range) return vm.sill; return vm.nugget + (vm.sill-vm.nugget)*d/vm.range; } double gctl::variogram(const double &d, const variogram_model &vm, variogram_type_e type) { if (type == SPHERICAL) return spherical_variogram(d, vm); else if (type == EXPONENTIAL) return exponential_variogram(d, vm); else if (type == GAUSSIAN) return gaussian_variogram(d, vm); else if (type == WAVE) return wave_variogram(d, vm); else if (type == RATIONAL_Q) return rational_quadratic_variogram(d, vm); else if (type == CIRCULAR) return circular_variogram(d, vm); else if (type == LINEAR) return linear_variogram(d, vm); return 0.0; }