/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "refellipsoid.h" gctl::refellipsoid::refellipsoid(/* args */){} gctl::refellipsoid::refellipsoid(refellipsoid_type_e refellipsoid) { set(refellipsoid); } gctl::refellipsoid::refellipsoid(double R, double r, bool flat) { set(R, r, flat); } gctl::refellipsoid::~refellipsoid(){} void gctl::refellipsoid::set(refellipsoid_type_e refellipsoid) { if (refellipsoid == Earth) {r_ = R_ = GCTL_Earth_Radius;} else if (refellipsoid == MagEarth) {r_ = R_ = GCTL_Earth_RefRadius;} else if (refellipsoid == Moon) {r_ = R_ = GCTL_Moon_Radius;} else if (refellipsoid == Mars) {r_ = R_ = GCTL_Mars_Radius;} else if (refellipsoid == WGS84) {r_ = GCTL_WGS84_PoleRadius; R_ = GCTL_WGS84_EquatorRadius;} else if (refellipsoid == Ardalan2010) {r_ = GCTL_Mars_Ardalan2010_PoleRadius; R_ = GCTL_Mars_Ardalan2010_EquatorRadius;} else throw std::invalid_argument("Invalid reference system type for gctl::refellipsoid::set(...)"); f_ = (R_ - r_)/R_; e_ = sqrt(1.0 - (r_*r_)/(R_*R_)); return; } void gctl::refellipsoid::set(double R, double r_or_flat, bool is_flat) { R_ = R; if (is_flat) r_ = R_*(1.0 - 1.0/r_or_flat); else r_ = r_or_flat; f_ = (R_ - r_)/R_; e_ = sqrt(1.0 - (r_*r_)/(R_*R_)); return; } double gctl::refellipsoid::geodetic_radius(double geodetic_lati) { return R_/sqrt(1.0 - e_*e_*sind(geodetic_lati)*sind(geodetic_lati)); } void gctl::refellipsoid::geodetic2spherical(double geodetic_lati, double geodetic_hei, double& sph_lati, double& sph_rad) { double CosLat, SinLat, rc, xp, zp; /* ** Convert geodetic coordinates, (defined by the WGS-84 ** reference ellipsoid), to Earth Centered Earth Fixed Cartesian ** coordinates, and then to spherical coordinates. */ CosLat = cosd(geodetic_lati); SinLat = sind(geodetic_lati); // compute the local rRdius of curvature on the WGS-84 reference ellipsoid rc = R_/sqrt(1.0 - e_*e_*SinLat*SinLat); // compute ECEF Cartesian coordinates of specified point (for longitude=0) xp = (rc + geodetic_hei)*CosLat; zp = (rc*(1.0 - e_*e_) + geodetic_hei)*SinLat; // compute spherical rRdius and angle lambda and phi of specified point sph_rad = sqrt(xp*xp + zp*zp); sph_lati = deg(asin(zp/sph_rad)); return; } void gctl::refellipsoid::spherical2geodetic(const point3ds& ps, double& geodetic_lon, double& geodetic_lati, double& geodetic_hei, double eps, int cnt) { point3dc pc = ps.s2c(); xyz2geodetic(pc, geodetic_lon, geodetic_lati, geodetic_hei, eps, cnt); return; } void gctl::refellipsoid::xyz2geodetic(const point3dc& pc, double& geodetic_lon, double& geodetic_lati, double& geodetic_hei, double eps, int cnt) { double curB, N; double H = sqrt(pc.x*pc.x + pc.y*pc.y); double calB = atan2(pc.z, H); int c = 0; do { curB = calB; N = R_/sqrt(1 - e_*e_*sin(curB)*sin(curB)); calB = atan2(pc.z + N*e_*e_*sin(curB), H); c++; } while (abs(curB - calB)*180.0/GCTL_Pi > eps && c < cnt); geodetic_lon = atan2(pc.y, pc.x)*180.0/GCTL_Pi; geodetic_lati = curB*180.0/GCTL_Pi; geodetic_hei = pc.z/sin(curB) - N*(1 - e_*e_); return; } void gctl::refellipsoid::geodetic2xyz(double geodetic_lon, double geodetic_lati, double geodetic_hei, point3dc& pc) { double L = arc(geodetic_lon); double B = arc(geodetic_lati); double H = geodetic_hei; double N = R_/sqrt(1 - e_*e_*sin(B)*sin(B)); pc.x = (N + H)*cos(B)*cos(L); pc.y = (N + H)*cos(B)*sin(L); pc.z = (N*(1 - e_*e_) + H)*sin(B); return; }