/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #ifndef _GCTL_MATHFUNC_TEMPLATE_H #define _GCTL_MATHFUNC_TEMPLATE_H #include "../core/enum.h" #include "../core/array.h" #include "../core/matrix.h" #include "../core/exceptions.h" #include "cmath" namespace gctl { template inline int sign(T d) { return (T(0) < d) - (d < T(0)); } template inline T arc(T deg) { return deg*GCTL_Pi/180.0; } template inline T deg(T arc) { return arc*180.0/GCTL_Pi; } template inline T sind(T deg) { return sin(deg*GCTL_Pi/180.0); } template inline T cosd(T deg) { return cos(deg*GCTL_Pi/180.0); } template inline T tand(T deg) { return tan(deg*GCTL_Pi/180.0); } template inline T power2(T in) { return (in)*(in); } template inline T power3(T in) { return (in)*(in)*(in); } template inline T power4(T in) { return (in)*(in)*(in)*(in); } template inline T power5(T in) { return (in)*(in)*(in)*(in)*(in); } template inline T jacoby2(T x00, T x01, T x10, T x11) { return x00*x11-x01*x10; } template inline T jacoby3(T x00, T x01, T x02, T x10, T x11, T x12, T x20, T x21, T x22) { return x00*x11*x22+x01*x12*x20+x10*x21*x02 -x02*x11*x20-x01*x10*x22-x00*x12*x21; } /** * @brief Calculate the inverse matrix of a 3x3 matrix * * @tparam T Type name * @param A Pointer of the input matrix, must be stored in an array of the nine coefficients in a row-major fashion * @param invA Pointer of the output matrix, must be stored in an array of the nine coefficients in a row-major fashion * @return true Success * @return false Fail */ template bool inverse3x3(T *A, T *invA) { T det = jacoby3(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8]); if (det <= GCTL_ZERO && det >= -1*GCTL_ZERO) return false; invA[0] = jacoby2(A[4], A[7], A[5], A[8])/det; invA[1] = -1.0*jacoby2(A[1], A[7], A[2], A[8])/det; invA[2] = jacoby2(A[1], A[4], A[2], A[5])/det; invA[3] = -1.0*jacoby2(A[3], A[6], A[5], A[8])/det; invA[4] = jacoby2(A[0], A[6], A[2], A[8])/det; invA[5] = -1.0*jacoby2(A[0], A[3], A[2], A[5])/det; invA[6] = jacoby2(A[3], A[6], A[4], A[7])/det; invA[7] = -1.0*jacoby2(A[0], A[6], A[1], A[7])/det; invA[8] = jacoby2(A[0], A[3], A[1], A[4])/det; return true; } template T arctg(T v) { T ang; if(v>=0) ang=atan(v); else if(v<0) ang=atan(v)+GCTL_Pi; return ang; } template T arctg2(T v, T f) { T ang; if(f>=0) { if(atan(v)>0) ang=atan(v); else ang=atan(v) + GCTL_Pi; } else if(f<0) { if(atan(v)<0) ang=atan(v); else ang=atan(v) - GCTL_Pi; } return ang; } } #endif //_GCTL_MATHFUNC_TEMPLATE_H /* template void matrix_vector(const matrix &mat, const array &vec, array &ret, T zero = 0, matrix_layout_e layout = NoTrans) { static_assert(std::is_arithmetic::value, "gctl::matrix_vector(...) could only be used with an arithmetic type."); if (mat.empty() || vec.empty()) { throw runtime_error("Empty matrix or vector. From matrix_vector(...)"); } if ((layout == NoTrans && mat.col_size() != vec.size()) || (layout == Trans && mat.row_size() != vec.size())) { throw runtime_error("Incompatible sizes of the matrix and the vector. From matrix_vector(...)"); } if (layout == Trans) { ret.resize(mat.col_size(), zero); for (int j = 0; j < mat.col_size(); ++j) { for (int i = 0; i < mat.row_size(); ++i) { ret[j] = ret[j] + mat[i][j]*vec[i]; } } return; } ret.resize(mat.row_size(), zero); for (int i = 0; i < mat.row_size(); ++i) { for (int j = 0; j < mat.col_size(); ++j) { ret[i] = ret[i] + mat[i][j]*vec[j]; } } return; } template void matrix_matrix(const matrix &mat, const matrix &mat2, matrix &ret, T zero = 0) { static_assert(std::is_arithmetic::value, "gctl::matrix_matrix(...) could only be used with an arithmetic type."); if (mat.empty() || mat2.empty()) { throw runtime_error("Empty matrix(s). From matrix_matrix(...)"); } if (mat.col_size() != mat2.row_size()) { throw runtime_error("Incompatible matrix sizes. From matrix_vector(...)"); } ret.resize(mat.row_size(), mat2.col_size(), zero); for (int i = 0; i < mat.row_size(); ++i) { for (int j = 0; j < mat2.col_size(); ++j) { for (int k = 0; k < mat.col_size(); ++k) { ret[i][j] = ret[i][j] + mat[i][k]*mat2[k][j]; } } } return; } template void linespace(const T &start, const T &end, unsigned int size, std::vector &out_vec) { if (size < 1) throw invalid_argument("Invalid vector size. From linespace(...)"); out_vec.resize(size); if (size == 1) { out_vec[0] = 0.5*(start + end); return; } T space = 1.0/(size-1)*(end - start); for (int i = 0; i < size; i++) { out_vec[i] = start + i*space; } return; } template void gridspace(const T &xs, const T &xe, const T &ys, const T &ye, unsigned int xn, unsigned int yn, std::vector &out_vec) { if (xn < 1 || yn < 1) throw invalid_argument("Invalid grid size. From gridspace(...)"); std::vector out_x, out_y; linespace(xs, xe, xn, out_x); linespace(ys, ye, yn, out_y); out_vec.resize(xn*yn); for (int i = 0; i < yn; ++i) { for (int j = 0; j < xn; ++j) { out_vec[j+i*xn] = out_x[j] + out_y[i]; } } return; } template void meshspace(const T &xs, const T &xe, const T &ys, const T &ye, const T &zs, const T &ze, unsigned int xn, unsigned int yn, unsigned int zn, std::vector &out_vec) { if (xn < 1 || yn < 1 || zn < 1) throw invalid_argument("Invalid grid size. From meshspace(...)"); array out_x, out_y, out_z; linespace(xs, xe, xn, out_x); linespace(ys, ye, yn, out_y); linespace(zs, ze, zn, out_z); out_vec.resize(xn*yn*zn); for (int i = 0; i < zn; ++i) { for (int j = 0; j < yn; ++j) { for (int k = 0; k < xn; ++k) { out_vec[k+j*xn+i*xn*yn] = out_x[k] + out_y[j] + out_z[i]; } } } return; } template T average(T *val_ptr, int size, const T &zero = 0) { if (val_ptr == nullptr) throw domain_error("Invalid pointer. From average(...)"); if (size <= 0) throw invalid_argument("Invalid object size. From average(...)"); T mn = zero; for (int i = 0; i < size; i++) { mn = mn + val_ptr[i]; } return 1.0/size*mn; } template T average(const std::vector &val_arr, const T &zero = 0) { if (val_arr.empty()) throw domain_error("Invalid object size. From average(...)"); int size = val_arr.size(); T mn = zero; for (int i = 0; i < size; i++) { mn = mn + val_arr[i]; } return 1.0/size*mn; } template T deviation(T *val_ptr, int size, const T &zero = 0, bool STD = false) { T mn = average(val_ptr, size); T deviation = zero; for (int i = 0; i < size; i++) { deviation = deviation + (val_ptr[i] - mn)*(val_ptr[i] - mn); } deviation = 1.0/size*deviation; if (STD) return sqrt(deviation); else return deviation; } template T deviation(const std::vector &val_arr, const T &zero = 0, bool STD = false) { T mn = average(val_arr); int size = val_arr.size(); T deviation = zero; for (int i = 0; i < size; i++) { deviation = deviation + (val_arr[i] - mn)*(val_arr[i] - mn); } deviation = 1.0/size*deviation; if (STD) return sqrt(deviation); else return deviation; } template T root_mn_square(T *val_ptr, int size, const T &zero = 0) { if (val_ptr == nullptr) throw domain_error("Invalid pointer. From root_mn_square(...)"); if (size <= 0) throw invalid_argument("Invalid object size. From root_mn_square(...)"); T mn = zero; for (int i = 0; i < size; i++) { mn = mn + val_ptr[i]*val_ptr[i]; } return sqrt(1.0/size*mn); } template T root_mn_square(const std::vector &val_arr, const T &zero = 0) { if (val_arr.empty()) throw domain_error("Invalid object size. From root_mn_square(...)"); int size = val_arr.size(); T mn = zero; for (int i = 0; i < size; i++) { mn = mn + val_arr[i]*val_arr[i]; } return sqrt(1.0/size*mn); } template void random(T p1, T p2, T *val_ptr, int size, random_type_e mode = RdNormal) { if (val_ptr == nullptr) throw domain_error("Invalid pointer. From random(...)"); if (size <= 0) throw invalid_argument("Invalid size. From random(...)"); unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); std::default_random_engine generator(seed); if (mode == RdNormal) { //添加高斯分布的随机值 std::normal_distribution dist(p1, p2); for (int i = 0; i < size; i++) { val_ptr[i] = dist(generator); } return; } //添加均匀分布的随机值 std::uniform_real_distribution dist(p1, p2); for (int i = 0; i < size; i++) { val_ptr[i] = dist(generator); } return; } template void random(T p1, T p2, std::vector &val_vec, random_type_e mode = RdNormal) { size_t size = val_vec.size(); if (size <= 0) throw invalid_argument("Invalid size. From random(...)"); unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); std::default_random_engine generator(seed); if (mode == RdNormal) { //添加高斯分布的随机值 std::normal_distribution dist(p1, p2); for (int i = 0; i < size; i++) { val_vec[i] = dist(generator); } return; } //添加均匀分布的随机值 std::uniform_real_distribution dist(p1, p2); for (int i = 0; i < size; i++) { val_vec[i] = dist(generator); } return; } template T normalize(array &in_arr, T eps = 1e-8) { T norm_val = norm(in_arr, L2); if (norm_val < eps) return 0.0; for (int i = 0; i < in_arr.size(); i++) { in_arr[i] /= norm_val; } return norm_val; } */