/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "legendre.h" double gctl::legendre_polynomials(size_t order, double x, bool derivative) { //if (x > 1.0 || x < -1.0) //{ // throw gctl::runtime_error("The calculating position must be in [-1, 1]. From gctl::legendre_polynomials(...)"); //} if (derivative == false) { if (order == 0) return 1.0; if (order == 1) return x; double n = 0, p = 0, p_1 = x, p_2 = 1.0; for (size_t i = 2; i <= order; i++) { n = (double) i - 1.0; p = (2.0*n + 1.0)*x*p_1/(n + 1.0) - n*p_2/(n + 1.0); p_2 = p_1; p_1 = p; } return p; } else { if (order == 0) return 0.0; if (order == 1) return 1.0; double n = 0, p = 0, p_1 = x, p_2 = 1.0; double pd = 0, pd_1 = 1.0, pd_2 = 0.0; for (size_t i = 2; i <= order; i++) { n = (double) i - 1.0; p = (2.0*n + 1.0)*x*p_1/(n + 1.0) - n*p_2/(n + 1.0); pd = (2.0*n + 1.0)*(p_1 + x*pd_1)/(n + 1.0) - n*pd_2/(n + 1.0); p_2 = p_1; p_1 = p; pd_2 = pd_1; pd_1 = pd; } return pd; } } void gctl::get_a_nm_array(int max_order, array> &cs) { int i, j; if (cs.size() != max_order) { cs.resize(max_order); for (i = 0; i < max_order; i++) cs[i].resize(i+1); } //向下列推计算 #pragma omp parallel for private(i,j) schedule(guided) for (j = 0; j < max_order; j++) { cs[j][j] = 0; //对角线上的值直接给0 反正用不到 for (i = j+1; i < max_order; i++) { cs[i][j] = sqrt(((2.0*i-1)*(2.0*i+1))/((i-j)*(i+j))); } } return; } void gctl::get_b_nm_array(int max_order, array> &cs) { int i,j; if (cs.size() != max_order) { cs.resize(max_order); for (i = 0; i < max_order; i++) cs[i].resize(i+1); } //向下列推计算 #pragma omp parallel for private(i,j) schedule(guided) for (j = 0; j < max_order; j++) { cs[j][j] = 0; //对角线上的值直接给0 反正用不到 for (i = j+1; i < max_order; i++) { cs[i][j] = sqrt(((2.0*i+1)*(i+j-1)*(i-j-1))/((i-j)*(i+j)*(2.0*i-3))); } } return; } void gctl::nalf_sfcm(array> &nalf, const array> &a_nm, const array> &b_nm, int max_order, double theta, legendre_norm_e norm, bool derivative) { if (a_nm.size() != max_order || b_nm.size() != max_order) { std::string err_str = "Incompatible coefficients' size."; throw runtime_error(err_str); } double norSum; if (norm == One) { norSum = 1.0; } else if (norm == Pi4) { norSum = 4.0*GCTL_Pi; } if (nalf.size() != max_order) { nalf.resize(max_order); for (int i = 0; i < max_order; i++) nalf[i].resize(i+1); } if (derivative) { double tmp; array tmp_nalf(max_order, 0.0), tmp2_nalf(max_order, 0.0); nalf[0][0] = 0.0; tmp_nalf[0] = sqrt(norSum)/sqrt(4.0*GCTL_Pi); nalf[1][1] = sqrt(3.0)*cos(theta*GCTL_Pi/180.0); tmp_nalf[1] = sqrt(3.0)*sin(theta*GCTL_Pi/180.0); //计算对角线上的值 递归计算 不能并行 for (int i = 2; i < max_order; i++) { nalf[i][i] = cos(theta*GCTL_Pi/180.0)*sqrt(0.5*(2.0*i+1)/i)*tmp_nalf[i-1] + sin(theta*GCTL_Pi/180.0)*sqrt(0.5*(2.0*i+1)/i)*nalf[i-1][i-1]; tmp_nalf[i] = sin(theta*GCTL_Pi/180.0)*sqrt(0.5*(2.0*i+1)/i)*tmp_nalf[i-1]; } //计算次对角线(m+1,m)上的值 递归计算 不能并行 for (int i = 0; i < max_order-1; i++) { nalf[i+1][i] = -1.0*sin(theta*GCTL_Pi/180.0)*sqrt(2.0*i+3)*tmp_nalf[i] + cos(theta*GCTL_Pi/180.0)*sqrt(2.0*i+3)*nalf[i][i]; tmp2_nalf[i] = tmp_nalf[i]; tmp_nalf[i] = cos(theta*GCTL_Pi/180.0)*sqrt(2.0*i+3)*tmp_nalf[i]; } //这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行 int i,j; #pragma omp parallel for private(i,j, tmp) schedule(guided) for (j = 0; j < max_order-1; j++) { for (i = j+2; i < max_order; i++) { nalf[i][j] = -1.0*a_nm[i][j]*sin(theta*GCTL_Pi/180.0)*tmp_nalf[j] + a_nm[i][j]*cos(theta*GCTL_Pi/180.0)*nalf[i-1][j] - b_nm[i][j]*nalf[i-2][j]; tmp = tmp_nalf[j]; tmp_nalf[j] = a_nm[i][j]*cos(theta*GCTL_Pi/180.0)*tmp_nalf[j] - b_nm[i][j]*tmp2_nalf[j]; tmp2_nalf[j] = tmp; } } } else { //赋初值给前两个对角线上的值 //norSum为1时第一个值为sqrt(1)/sqrt(4.0*pi) = 1/sqrt(4.0*pi), 对应的归一化值为1 //norSum为4.0*pi时第一个值为4.0*pi/sqrt(4.0*pi) = 1, 对应的归一化值为4.0*pi nalf[0][0] = sqrt(norSum)/sqrt(4.0*GCTL_Pi); nalf[1][1] = sqrt(3.0)*sin(theta*GCTL_Pi/180.0); //计算对角线上的值 递归计算 不能并行 for (int i = 2; i < max_order; i++) { nalf[i][i] = sin(theta*GCTL_Pi/180.0)*sqrt(0.5*(2.0*i+1)/i)*nalf[i-1][i-1]; } //计算次对角线(m+1,m)上的值 递归计算 不能并行 for (int i = 0; i < max_order-1; i++) { nalf[i+1][i] = cos(theta*GCTL_Pi/180.0)*sqrt(2.0*i+3)*nalf[i][i]; } //这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行 int i,j; #pragma omp parallel for private(i,j) schedule(guided) for (j = 0; j < max_order-1; j++) { for (i = j+2; i < max_order; i++) { nalf[i][j] = a_nm[i][j]*cos(theta*GCTL_Pi/180.0)*nalf[i-1][j] - b_nm[i][j]*nalf[i-2][j]; } } } return; }