/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #ifndef _GCTL_TENSOR_H #define _GCTL_TENSOR_H #include "../core.h" #include "point3c.h" namespace gctl { template struct type_tensor; typedef type_tensor tensor; #ifndef IO_PSN #define IO_PSN // static variable for controlling the IO process static int io_psn = 6; #endif // IO_PSN /** * @brief Structure of a 3*3 tensor product. * * 3x3 的张量 */ template struct type_tensor { T val[3][3]; // 构造函数与拷贝构造函数 type_tensor(); type_tensor(T a); type_tensor(T a0, T a1, T a2, T a3, T a4, T a5, T a6, T a7, T a8); type_tensor(const array &p); // 数组的长度必须是9 type_tensor(const matrix &p); // 二维数组的大小必须是3*3 type_tensor(const type_tensor &b); // 析构函数 virtual ~type_tensor(){} // 结构体方法 void set(T a); void set(T a0, T a1, T a2, T a3, T a4, T a5, T a6, T a7, T a8); void set(const array &p); void set(const matrix &p); void set(const type_tensor &b); type_tensor transpose() const; // 元素获取方法 T &at(unsigned int row_index, unsigned int col_index); T at(unsigned int row_index, unsigned int col_index) const; T *operator[](unsigned int index); }; template type_tensor::type_tensor() { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { val[i][j] = NAN; } } } template type_tensor::type_tensor(T a) { set(a); } template type_tensor::type_tensor(T a0, T a1, T a2, T a3, T a4, T a5, T a6, T a7, T a8) { set(a0, a1, a2, a3, a4, a5, a6, a7, a8); } template type_tensor::type_tensor(const array &p) { set(p); } template type_tensor::type_tensor(const matrix &p) { set(p); } template type_tensor::type_tensor(const type_tensor &b) { set(b); } template void type_tensor::set(T a) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { val[i][j] = a; } } return; } template void type_tensor::set(T a0, T a1, T a2, T a3, T a4, T a5, T a6, T a7, T a8) { val[0][0] = a0; val[0][1] = a1; val[0][2] = a2; val[1][0] = a3; val[1][1] = a4; val[1][2] = a5; val[2][0] = a6; val[2][1] = a7; val[2][2] = a8; return; } template void type_tensor::set(const array &p) { if (p.size() != 9) throw runtime_error("Incompatible array size. From type_tensor::set(...)"); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) val[i][j] = p[3*i + j]; return; } template void type_tensor::set(const matrix &p) { if (p.row_size() != 3 || p.col_size() != 3) throw runtime_error("Incompatible matrix size. From type_tensor::set(...)"); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) val[i][j] = p[i][j]; return; } template void type_tensor::set(const type_tensor &b) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) val[i][j] = b.val[i][j]; return; } template type_tensor type_tensor::transpose() const { type_tensor m; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { m.val[i][j] = val[j][i]; } } return m; } template T &type_tensor::at(unsigned int row_index, unsigned int col_index) { return val[row_index][col_index]; } template T type_tensor::at(unsigned int row_index, unsigned int col_index) const { return val[row_index][col_index]; } template T *type_tensor::operator[](unsigned int index) { return val[index]; } /** * @brief 重载逻辑操作符, 执行两个 gctl::tensor 类型的加法。 * * @param[in] a gctl::tensor 类型值,加数。 * @param[in] b gctl::tensor 类型值,加数。 * * @return gctl::tensor 类型值,和。 */ template type_tensor operator +(const type_tensor &a, const type_tensor &b) { type_tensor m; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { m[i][j] = a.val[i][j] + b.val[i][j]; } } return m; } /** * @brief 重载逻辑操作符, 执行两个 gctl::tensor 类型的减法。 * * @param[in] a gctl::tensor 类型值,减数。 * @param[in] b gctl::tensor 类型值,被减数。 * * @return gctl::tensor 类型值,差。 */ template type_tensor operator -(const type_tensor &a, const type_tensor &b) { type_tensor m; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { m[i][j] = a.val[i][j] - b.val[i][j]; } } return m; } /** * @brief 重载运算操作符, 执行两个 gctl::tensor 类型的乘法。 * * @param[in] a gctl::tensor 类型值,乘数。 * @param[in] b gctl::tensor 类型值,被乘数。 * * @return gctl::tensor 类型值,积。 */ template type_tensor operator *(const type_tensor &a, const type_tensor &b) { type_tensor m; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { m[i][j] = 0.0; for (int k = 0; k < 3; k++) { m[i][j] += a.val[i][k] * b.val[k][j]; } } } return m; } /** * @brief 重载运算操作符, 张量乘向量。 * * @param[in] m 张量 * @param[in] a 向量 * * @return 积向量 */ template point3c operator *(const type_tensor &m, const point3c &a) { point3c v; v.x = a.x*m.val[0][0] + a.y*m.val[0][1] + a.z*m.val[0][2]; v.y = a.x*m.val[1][0] + a.y*m.val[1][1] + a.z*m.val[1][2]; v.z = a.x*m.val[2][0] + a.y*m.val[2][1] + a.z*m.val[2][2]; return v; } /** * @brief 重载运算操作符, 向量乘张量。 * * @param[in] m 张量 * @param[in] a 向量 * * @return 积向量 */ template point3c operator *(const point3c &a, const type_tensor &m) { point3c v; v.x = a.x*m.val[0][0] + a.y*m.val[1][0] + a.z*m.val[2][0]; v.y = a.x*m.val[0][1] + a.y*m.val[1][1] + a.z*m.val[2][1]; v.z = a.x*m.val[0][2] + a.y*m.val[1][2] + a.z*m.val[2][2]; return v; } /** * @brief 标量成张量 * * @param[in] d 标量 * @param[in] a 张量 * * @return 积张量 */ template type_tensor operator *(double d, const type_tensor &a) { type_tensor m; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { m.val[i][j] = a.val[i][j]*d; } } return m; } template type_tensor operator *(const type_tensor &a, double d) { type_tensor m; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { m.val[i][j] = a.val[i][j]*d; } } return m; } /** * @brief 重载输出流 * * @param os 输出流 * @param[in] a 张量对象 * * @return 输出流 */ template std::ostream &operator <<(std::ostream & os, const type_tensor &a) { os << std::setprecision(io_psn) << a.val[0][0] << " " << a.val[0][1] << " " << a.val[0][2] << " " << a.val[1][0] << " " << a.val[1][1] << " " << a.val[1][2] << " " << a.val[2][0] << " " << a.val[2][1] << " " << a.val[2][2]; return os; } /** * @brief 重载输入流 * * @param os 输入流 * @param a 张量对象 * * @return 输入流 */ template std::istream &operator >>(std::istream & os, type_tensor &a) { os >> a.val[0][0] >> a.val[0][1] >> a.val[0][2] >> a.val[1][0] >> a.val[1][1] >> a.val[1][2] >> a.val[2][0] >> a.val[2][1] >> a.val[2][2]; return os; } /** * @brief 两个矢量的张量积 * * @param[in] a 输出的矢量a * @param[in] b 输出的矢量b * * @return 返回的张量。 */ template type_tensor kron(const point3c &a, const point3c &b) { type_tensor t; t.val[0][0]=a.x*b.x; t.val[0][1]=a.x*b.y; t.val[0][2]=a.x*b.z; t.val[1][0]=a.y*b.x; t.val[1][1]=a.y*b.y; t.val[1][2]=a.y*b.z; t.val[2][0]=a.z*b.x; t.val[2][1]=a.z*b.y; t.val[2][2]=a.z*b.z; return t; } } #endif // _GCTL_TENSOR_H