gctl/lib/math/legendre.cpp
2025-04-23 12:39:44 +08:00

221 lines
6.7 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "legendre.h"
double gctl::legendre_polynomials(size_t order, double x, bool derivative)
{
//if (x > 1.0 || x < -1.0)
//{
// throw gctl::runtime_error("The calculating position must be in [-1, 1]. From gctl::legendre_polynomials(...)");
//}
if (derivative == false)
{
if (order == 0) return 1.0;
if (order == 1) return x;
double n = 0, p = 0, p_1 = x, p_2 = 1.0;
for (size_t i = 2; i <= order; i++)
{
n = (double) i - 1.0;
p = (2.0*n + 1.0)*x*p_1/(n + 1.0) - n*p_2/(n + 1.0);
p_2 = p_1; p_1 = p;
}
return p;
}
else
{
if (order == 0) return 0.0;
if (order == 1) return 1.0;
double n = 0, p = 0, p_1 = x, p_2 = 1.0;
double pd = 0, pd_1 = 1.0, pd_2 = 0.0;
for (size_t i = 2; i <= order; i++)
{
n = (double) i - 1.0;
p = (2.0*n + 1.0)*x*p_1/(n + 1.0) - n*p_2/(n + 1.0);
pd = (2.0*n + 1.0)*(p_1 + x*pd_1)/(n + 1.0) - n*pd_2/(n + 1.0);
p_2 = p_1; p_1 = p;
pd_2 = pd_1; pd_1 = pd;
}
return pd;
}
}
void gctl::get_a_nm_array(int max_order, array<array<double>> &cs)
{
int i, j;
if (cs.size() != max_order)
{
cs.resize(max_order);
for (i = 0; i < max_order; i++)
cs[i].resize(i+1);
}
//向下列推计算
#pragma omp parallel for private(i,j) schedule(guided)
for (j = 0; j < max_order; j++)
{
cs[j][j] = 0; //对角线上的值直接给0 反正用不到
for (i = j+1; i < max_order; i++)
{
cs[i][j] = sqrt(((2.0*i-1)*(2.0*i+1))/((i-j)*(i+j)));
}
}
return;
}
void gctl::get_b_nm_array(int max_order, array<array<double>> &cs)
{
int i,j;
if (cs.size() != max_order)
{
cs.resize(max_order);
for (i = 0; i < max_order; i++)
cs[i].resize(i+1);
}
//向下列推计算
#pragma omp parallel for private(i,j) schedule(guided)
for (j = 0; j < max_order; j++)
{
cs[j][j] = 0; //对角线上的值直接给0 反正用不到
for (i = j+1; i < max_order; i++)
{
cs[i][j] = sqrt(((2.0*i+1)*(i+j-1)*(i-j-1))/((i-j)*(i+j)*(2.0*i-3)));
}
}
return;
}
void gctl::nalf_sfcm(array<array<double>> &nalf, const array<array<double>> &a_nm,
const array<array<double>> &b_nm, int max_order, double theta,
legendre_norm_e norm, bool derivative)
{
if (a_nm.size() != max_order || b_nm.size() != max_order)
{
std::string err_str = "Incompatible coefficients' size.";
throw runtime_error(err_str);
}
double norSum;
if (norm == One)
{
norSum = 1.0;
}
else if (norm == Pi4)
{
norSum = 4.0*GCTL_Pi;
}
if (nalf.size() != max_order)
{
nalf.resize(max_order);
for (int i = 0; i < max_order; i++)
nalf[i].resize(i+1);
}
if (derivative)
{
double tmp;
array<double> tmp_nalf(max_order, 0.0), tmp2_nalf(max_order, 0.0);
nalf[0][0] = 0.0;
tmp_nalf[0] = sqrt(norSum)/sqrt(4.0*GCTL_Pi);
nalf[1][1] = sqrt(3.0)*cos(theta*GCTL_Pi/180.0);
tmp_nalf[1] = sqrt(3.0)*sin(theta*GCTL_Pi/180.0);
//计算对角线上的值 递归计算 不能并行
for (int i = 2; i < max_order; i++)
{
nalf[i][i] = cos(theta*GCTL_Pi/180.0)*sqrt(0.5*(2.0*i+1)/i)*tmp_nalf[i-1]
+ sin(theta*GCTL_Pi/180.0)*sqrt(0.5*(2.0*i+1)/i)*nalf[i-1][i-1];
tmp_nalf[i] = sin(theta*GCTL_Pi/180.0)*sqrt(0.5*(2.0*i+1)/i)*tmp_nalf[i-1];
}
//计算次对角线(m+1,m)上的值 递归计算 不能并行
for (int i = 0; i < max_order-1; i++)
{
nalf[i+1][i] = -1.0*sin(theta*GCTL_Pi/180.0)*sqrt(2.0*i+3)*tmp_nalf[i]
+ cos(theta*GCTL_Pi/180.0)*sqrt(2.0*i+3)*nalf[i][i];
tmp2_nalf[i] = tmp_nalf[i];
tmp_nalf[i] = cos(theta*GCTL_Pi/180.0)*sqrt(2.0*i+3)*tmp_nalf[i];
}
//这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行
int i,j;
#pragma omp parallel for private(i,j, tmp) schedule(guided)
for (j = 0; j < max_order-1; j++)
{
for (i = j+2; i < max_order; i++)
{
nalf[i][j] = -1.0*a_nm[i][j]*sin(theta*GCTL_Pi/180.0)*tmp_nalf[j]
+ a_nm[i][j]*cos(theta*GCTL_Pi/180.0)*nalf[i-1][j] - b_nm[i][j]*nalf[i-2][j];
tmp = tmp_nalf[j];
tmp_nalf[j] = a_nm[i][j]*cos(theta*GCTL_Pi/180.0)*tmp_nalf[j] - b_nm[i][j]*tmp2_nalf[j];
tmp2_nalf[j] = tmp;
}
}
}
else
{
//赋初值给前两个对角线上的值
//norSum为1时第一个值为sqrt(1)/sqrt(4.0*pi) = 1/sqrt(4.0*pi), 对应的归一化值为1
//norSum为4.0*pi时第一个值为4.0*pi/sqrt(4.0*pi) = 1, 对应的归一化值为4.0*pi
nalf[0][0] = sqrt(norSum)/sqrt(4.0*GCTL_Pi);
nalf[1][1] = sqrt(3.0)*sin(theta*GCTL_Pi/180.0);
//计算对角线上的值 递归计算 不能并行
for (int i = 2; i < max_order; i++)
{
nalf[i][i] = sin(theta*GCTL_Pi/180.0)*sqrt(0.5*(2.0*i+1)/i)*nalf[i-1][i-1];
}
//计算次对角线(m+1,m)上的值 递归计算 不能并行
for (int i = 0; i < max_order-1; i++)
{
nalf[i+1][i] = cos(theta*GCTL_Pi/180.0)*sqrt(2.0*i+3)*nalf[i][i];
}
//这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行
int i,j;
#pragma omp parallel for private(i,j) schedule(guided)
for (j = 0; j < max_order-1; j++)
{
for (i = j+2; i < max_order; i++)
{
nalf[i][j] = a_nm[i][j]*cos(theta*GCTL_Pi/180.0)*nalf[i-1][j] - b_nm[i][j]*nalf[i-2][j];
}
}
}
return;
}