103 lines
4.6 KiB
C++
103 lines
4.6 KiB
C++
/********************************************************
|
||
* ██████╗ ██████╗████████╗██╗
|
||
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
||
* ██║ ███╗██║ ██║ ██║
|
||
* ██║ ██║██║ ██║ ██║
|
||
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
||
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
||
* Geophysical Computational Tools & Library (GCTL)
|
||
*
|
||
* Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn)
|
||
*
|
||
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
||
* it and/or modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation, either version 2
|
||
* of the License, or (at your option) any later version. You should have
|
||
* received a copy of the GNU Lesser General Public License along with this
|
||
* program. If not, see <http://www.gnu.org/licenses/>.
|
||
*
|
||
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
||
* the GCTL, please consider the option to obtain a commercial license for a
|
||
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
||
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
||
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
||
* to include some description of your company and the realm of its activities.
|
||
* Also add information on how to contact you by electronic and paper mail.
|
||
******************************************************/
|
||
|
||
#ifndef _GCTL_LEGENDRE_H
|
||
#define _GCTL_LEGENDRE_H
|
||
|
||
#include "../core/array.h"
|
||
|
||
namespace gctl
|
||
{
|
||
/**
|
||
* @brief 伴随勒让德系数归一化类型
|
||
*/
|
||
enum legendre_norm_e
|
||
{
|
||
One, ///< 归一化总值为1
|
||
Pi4, ///< 归一化总值为4*pi
|
||
};
|
||
|
||
/**
|
||
* @brief 利用递推公式计算[-1, 1]内不同阶数的勒让德多项式的值
|
||
*
|
||
* @param order 阶数
|
||
* @param x 坐标位置
|
||
* @param derivative 计算相对于x的导数
|
||
* @return 多项式值
|
||
*/
|
||
double legendre_polynomials(size_t order, double x, bool derivative = false);
|
||
|
||
/**
|
||
* @brief 计算向前列推的a系数,避免重复计算。
|
||
*
|
||
* @note Fully normalized associated Legendre functions calculated by standard forward column methods
|
||
* Holmes, S. A., & Featherstone, W. E. (2002). A unified approach to the Clenshaw summation and the recursive computation of
|
||
* very high degree and order normalized associated Legendre functions.
|
||
* Journal of Geodesy, 76(5), 279–299. https://doi.org/10.1007/s00190-002-0216-2
|
||
*
|
||
* @param[in] max_order 最大的计算阶数
|
||
* @param cs 返回的系数
|
||
*/
|
||
void get_a_nm_array(int max_order, array<array<double>> &cs);
|
||
|
||
/**
|
||
* @brief 计算向前列推的b系数,避免重复计算。
|
||
*
|
||
* @note Fully normalized associated Legendre functions calculated by standard forward column methods
|
||
* Holmes, S. A., & Featherstone, W. E. (2002). A unified approach to the Clenshaw summation and the recursive computation of
|
||
* very high degree and order normalized associated Legendre functions.
|
||
* Journal of Geodesy, 76(5), 279–299. https://doi.org/10.1007/s00190-002-0216-2
|
||
*
|
||
* @param[in] max_order 最大的计算阶数
|
||
* @param cs 返回的系数
|
||
*/
|
||
void get_b_nm_array(int max_order, array<array<double>> &cs);
|
||
|
||
/**
|
||
* @brief 计算标准前向列推法计算规格化的勒让德多项式
|
||
*
|
||
* 二维数组中行数代表阶数列数为次数
|
||
*
|
||
* @note Fully normalized associated Legendre functions calculated by standard forward column methods
|
||
* Holmes, S. A., & Featherstone, W. E. (2002). A unified approach to the Clenshaw summation and the recursive computation of
|
||
* very high degree and order normalized associated Legendre functions.
|
||
* Journal of Geodesy, 76(5), 279–299. https://doi.org/10.1007/s00190-002-0216-2
|
||
*
|
||
* @param nalf 返回的勒让德多项式系数,一个下半三角二维矩阵
|
||
* @param[in] a_nm A系数
|
||
* @param[in] b_nm B系数
|
||
* @param[in] max_order 最大的计算阶数
|
||
* @param[in] theta 计算点的纬度值(度)
|
||
* @param[in] norm 系数的归一化总值大小
|
||
* @param[in] derivative 计算相对于theta的导数
|
||
*/
|
||
void nalf_sfcm(array<array<double>> &nalf, const array<array<double>> &a_nm,
|
||
const array<array<double>> &b_nm, int max_order, double theta,
|
||
legendre_norm_e norm, bool derivative = false);
|
||
};
|
||
|
||
#endif //_GCTL_LEGENDRE_H
|