143 lines
5.1 KiB
C++
143 lines
5.1 KiB
C++
/********************************************************
|
|
* ██████╗ ██████╗████████╗██╗
|
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
|
* ██║ ███╗██║ ██║ ██║
|
|
* ██║ ██║██║ ██║ ██║
|
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
|
* Geophysical Computational Tools & Library (GCTL)
|
|
*
|
|
* Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn)
|
|
*
|
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, either version 2
|
|
* of the License, or (at your option) any later version. You should have
|
|
* received a copy of the GNU Lesser General Public License along with this
|
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
|
* the GCTL, please consider the option to obtain a commercial license for a
|
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
|
* to include some description of your company and the realm of its activities.
|
|
* Also add information on how to contact you by electronic and paper mail.
|
|
******************************************************/
|
|
|
|
#include "refellipsoid.h"
|
|
|
|
gctl::refellipsoid::refellipsoid(/* args */){}
|
|
|
|
gctl::refellipsoid::refellipsoid(refellipsoid_type_e refellipsoid)
|
|
{
|
|
set(refellipsoid);
|
|
}
|
|
|
|
gctl::refellipsoid::refellipsoid(double R, double r, bool flat)
|
|
{
|
|
set(R, r, flat);
|
|
}
|
|
|
|
gctl::refellipsoid::~refellipsoid(){}
|
|
|
|
void gctl::refellipsoid::set(refellipsoid_type_e refellipsoid)
|
|
{
|
|
if (refellipsoid == Earth) {r_ = R_ = GCTL_Earth_Radius;}
|
|
else if (refellipsoid == MagEarth) {r_ = R_ = GCTL_Earth_RefRadius;}
|
|
else if (refellipsoid == Moon) {r_ = R_ = GCTL_Moon_Radius;}
|
|
else if (refellipsoid == Mars) {r_ = R_ = GCTL_Mars_Radius;}
|
|
else if (refellipsoid == WGS84) {r_ = GCTL_WGS84_PoleRadius; R_ = GCTL_WGS84_EquatorRadius;}
|
|
else if (refellipsoid == Ardalan2010) {r_ = GCTL_Mars_Ardalan2010_PoleRadius; R_ = GCTL_Mars_Ardalan2010_EquatorRadius;}
|
|
else throw std::invalid_argument("Invalid reference system type for gctl::refellipsoid::set(...)");
|
|
|
|
f_ = (R_ - r_)/R_;
|
|
e_ = sqrt(1.0 - (r_*r_)/(R_*R_));
|
|
return;
|
|
}
|
|
|
|
void gctl::refellipsoid::set(double R, double r_or_flat, bool is_flat)
|
|
{
|
|
R_ = R;
|
|
if (is_flat) r_ = R_*(1.0 - 1.0/r_or_flat);
|
|
else r_ = r_or_flat;
|
|
|
|
f_ = (R_ - r_)/R_;
|
|
e_ = sqrt(1.0 - (r_*r_)/(R_*R_));
|
|
return;
|
|
}
|
|
|
|
double gctl::refellipsoid::geodetic_radius(double geodetic_lati)
|
|
{
|
|
return R_/sqrt(1.0 - e_*e_*sind(geodetic_lati)*sind(geodetic_lati));
|
|
}
|
|
|
|
void gctl::refellipsoid::geodetic2spherical(double geodetic_lati,
|
|
double geodetic_hei, double& sph_lati, double& sph_rad)
|
|
{
|
|
double CosLat, SinLat, rc, xp, zp;
|
|
/*
|
|
** Convert geodetic coordinates, (defined by the WGS-84
|
|
** reference ellipsoid), to Earth Centered Earth Fixed Cartesian
|
|
** coordinates, and then to spherical coordinates.
|
|
*/
|
|
CosLat = cosd(geodetic_lati);
|
|
SinLat = sind(geodetic_lati);
|
|
|
|
// compute the local rRdius of curvature on the WGS-84 reference ellipsoid
|
|
rc = R_/sqrt(1.0 - e_*e_*SinLat*SinLat);
|
|
|
|
// compute ECEF Cartesian coordinates of specified point (for longitude=0)
|
|
xp = (rc + geodetic_hei)*CosLat;
|
|
zp = (rc*(1.0 - e_*e_) + geodetic_hei)*SinLat;
|
|
|
|
// compute spherical rRdius and angle lambda and phi of specified point
|
|
sph_rad = sqrt(xp*xp + zp*zp);
|
|
sph_lati = deg(asin(zp/sph_rad));
|
|
return;
|
|
}
|
|
|
|
void gctl::refellipsoid::spherical2geodetic(const point3ds& ps, double& geodetic_lon, double& geodetic_lati,
|
|
double& geodetic_hei, double eps, int cnt)
|
|
{
|
|
point3dc pc = s2c(ps);
|
|
xyz2geodetic(pc, geodetic_lon, geodetic_lati, geodetic_hei, eps, cnt);
|
|
return;
|
|
}
|
|
|
|
void gctl::refellipsoid::xyz2geodetic(const point3dc& pc, double& geodetic_lon,
|
|
double& geodetic_lati, double& geodetic_hei, double eps, int cnt)
|
|
{
|
|
double curB, N;
|
|
double H = sqrt(pc.x*pc.x + pc.y*pc.y);
|
|
double calB = atan2(pc.z, H);
|
|
|
|
int c = 0;
|
|
do
|
|
{
|
|
curB = calB;
|
|
N = R_/sqrt(1 - e_*e_*sin(curB)*sin(curB));
|
|
calB = atan2(pc.z + N*e_*e_*sin(curB), H);
|
|
c++;
|
|
}
|
|
while (abs(curB - calB)*180.0/GCTL_Pi > eps && c < cnt);
|
|
|
|
geodetic_lon = atan2(pc.y, pc.x)*180.0/GCTL_Pi;
|
|
geodetic_lati = curB*180.0/GCTL_Pi;
|
|
geodetic_hei = pc.z/sin(curB) - N*(1 - e_*e_);
|
|
return;
|
|
}
|
|
|
|
void gctl::refellipsoid::geodetic2xyz(double geodetic_lon, double geodetic_lati,
|
|
double geodetic_hei, point3dc& pc)
|
|
{
|
|
double L = arc(geodetic_lon);
|
|
double B = arc(geodetic_lati);
|
|
double H = geodetic_hei;
|
|
|
|
double N = R_/sqrt(1 - e_*e_*sin(B)*sin(B));
|
|
pc.x = (N + H)*cos(B)*cos(L);
|
|
pc.y = (N + H)*cos(B)*sin(L);
|
|
pc.z = (N*(1 - e_*e_) + H)*sin(B);
|
|
return;
|
|
} |