116 lines
4.2 KiB
C++
116 lines
4.2 KiB
C++
|
/********************************************************
|
||
|
* ██████╗ ██████╗████████╗██╗
|
||
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
||
|
* ██║ ███╗██║ ██║ ██║
|
||
|
* ██║ ██║██║ ██║ ██║
|
||
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
||
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
||
|
* Geophysical Computational Tools & Library (GCTL)
|
||
|
*
|
||
|
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
|
||
|
*
|
||
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
||
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation, either version 2
|
||
|
* of the License, or (at your option) any later version. You should have
|
||
|
* received a copy of the GNU Lesser General Public License along with this
|
||
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*
|
||
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
||
|
* the GCTL, please consider the option to obtain a commercial license for a
|
||
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
||
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
||
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
||
|
* to include some description of your company and the realm of its activities.
|
||
|
* Also add information on how to contact you by electronic and paper mail.
|
||
|
******************************************************/
|
||
|
|
||
|
#include "../data/MNIST/mnist_database.h"
|
||
|
#include "../lib/dnn.h"
|
||
|
|
||
|
using namespace gctl;
|
||
|
|
||
|
int main(int argc, char const *argv[]) try
|
||
|
{
|
||
|
mnist_database data("data/MNIST");
|
||
|
|
||
|
matrix<double> train_obs(784, 60000), train_lab(10, 60000, 0.0);
|
||
|
matrix<double> test_obs(784, 10000), test_lab(10, 10000, 0.0), predicts(10, 10000);
|
||
|
|
||
|
const std::vector<std::vector<double> > &dt_obs = data.train_images();
|
||
|
for (size_t i = 0; i < 60000; i++)
|
||
|
{
|
||
|
for (size_t j = 0; j < 784; j++)
|
||
|
{
|
||
|
train_obs[j][i] = dt_obs[i][j]/255.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const std::vector<std::vector<double> > &dt_obs2 = data.test_images();
|
||
|
for (size_t i = 0; i < 10000; i++)
|
||
|
{
|
||
|
for (size_t j = 0; j < 784; j++)
|
||
|
{
|
||
|
test_obs[j][i] = dt_obs2[i][j]/255.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const std::vector<double> &dt_lab = data.train_labels();
|
||
|
for (size_t i = 0; i < 60000; i++)
|
||
|
{
|
||
|
train_lab[dt_lab[i]][i] = 1.0;
|
||
|
}
|
||
|
|
||
|
const std::vector<double> &dt_lab2 = data.test_labels();
|
||
|
for (size_t i = 0; i < 10000; i++)
|
||
|
{
|
||
|
test_lab[dt_lab2[i]][i] = 1.0;
|
||
|
}
|
||
|
|
||
|
dnn my_nn("Ex-MNIST");
|
||
|
my_nn.add_hind_layer(1, 28, 28, 4, 4, 2, 2, Convolution, Same, PReLU);
|
||
|
my_nn.add_hind_layer(169, 256, FullyConnected, PReLU);
|
||
|
my_nn.add_hind_layer(256, 10, FullyConnected, SoftMax);
|
||
|
my_nn.add_output_layer(MultiClassEntropy);
|
||
|
my_nn.add_train_set(train_obs, train_lab, 5000);
|
||
|
my_nn.init_network(0.0, 0.1);
|
||
|
|
||
|
sgd_para my_para = my_nn.default_sgd_para();
|
||
|
my_para.alpha = 0.01;
|
||
|
my_para.epsilon = 1e-5;
|
||
|
my_nn.train_network(my_para, gctl::ADAM);
|
||
|
//lgd_para my_para = my_nn.default_lgd_para();
|
||
|
//my_para.flight_times = 2000;
|
||
|
//my_para.alpha = 0.1;
|
||
|
//my_nn.train_network(my_para);
|
||
|
|
||
|
my_nn.predict(test_obs, predicts);
|
||
|
my_nn.save_network("data/saved_networks/mnist_m2");
|
||
|
|
||
|
int wrong_predicts = 0;
|
||
|
int test_id, pre_id;
|
||
|
double test_scr, pre_scr;
|
||
|
for (size_t j = 0; j < 10000; j++)
|
||
|
{
|
||
|
test_id = pre_id = 0;
|
||
|
test_scr = pre_scr = 0;
|
||
|
for (size_t i = 0; i < 10; i++)
|
||
|
{
|
||
|
if (test_lab[i][j] > test_scr) {test_scr = test_lab[i][j]; test_id = i;}
|
||
|
if (predicts[i][j] > pre_scr) {pre_scr = predicts[i][j]; pre_id = i;}
|
||
|
}
|
||
|
|
||
|
if (test_id != pre_id)
|
||
|
{
|
||
|
wrong_predicts++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::cout << "Correct Rate = " << (10000 - wrong_predicts)/100.0 << "%\n";
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
catch (std::exception &e)
|
||
|
{
|
||
|
GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, 0, 0);
|
||
|
}
|