gctl_ai/lib/dnn/hlayer_convolution.h

74 lines
3.3 KiB
C
Raw Normal View History

2024-09-10 20:15:33 +08:00
/********************************************************
*
*
*
*
*
*
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#ifndef _GCTL_DNN_HLAYER_CONVOLUTION_H
#define _GCTL_DNN_HLAYER_CONVOLUTION_H
#include "hlayer.h"
namespace gctl
{
class convolution : public dnn_hlayer
{
public:
convolution();
convolution(int p_st, int channels, int in_rows, int in_cols, int filter_rows, int filter_cols,
int stride_rows, int stride_cols, pad_type_e pl_type, activation_type_e acti_type);
virtual ~convolution();
void forward_propagation(const array<double> &all_weights, const matrix<double> &prev_layer_data);
void backward_propagation(const array<double> &all_weights, const array<double> &all_ders,
const matrix<double> &prev_layer_data, const matrix<double> &next_layer_data);
hlayer_type_e get_layer_type() const;
std::string get_layer_name() const;
std::string layer_info() const;
void save_layer_setup(std::ofstream &os) const;
void load_layer_setup(std::ifstream &is);
void save_weights2text(const array<double> &all_weights, std::ofstream &os) const;
private:
void init_convolution(int p_st, int channels, int in_rows, int in_cols, int filter_rows, int filter_cols, int stride_rows,
int stride_cols, pad_type_e pl_type, activation_type_e acti_type);
private:
int i_rows_, i_cols_, f_rows_, f_cols_, s_rows_, s_cols_;
int o_rows_, o_cols_;
int l_pad_, u_pad_;
int chls_;
int w_st_; // weight start index
int b_st_; // bias start index
array<int> all_ders_count_;
matrix<int> der_in_count_;
array<int> p_idx_;
pad_type_e p_type_;
};
}
#endif // _GCTL_DNN_HLAYER_CONVOLUTION_H